注册 登录 进入教材巡展
#
  • #

出版时间:2011年3月

出版社:科学职教中心

以下为《运筹学基础》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 科学职教中心
  • 9787030302083
  • 190472
  • 0043153942-8
  • 16开
  • 2011年3月
  • 178
  • 理学
  • 数学
  • O22
  • 工商管理、经济管理
  • 本科
内容简介
孙淼主编的这本《运筹学基础》系统地介绍了线性规划、整数规划、动态规划、图与网络分析等运筹学各分支的主要理论和方法,全书共分为8章,内容包括:线性规划基础、单纯形法、对偶理论、灵敏度分析、运输问题、整数规划、动态规划、图论与网络分析。各章开头点明本章学习目标和学习要点:内容上注意结合生产生活实际,有较强的实用性;各章后附有丰富的典型例题和案例分析,以帮助读者复习基本知识和检查学习效果。
《运筹学基础》可供应用型本科院校经济管理类专业和其他理工类专业的本科生作为教材使用,也可作为工程技术人员和经济管理人员的参考用书。
目录

绪论


  第一节  运筹学简史


    一、现代运筹学发展简史


    二、中国运筹学的发展简史


    三、运筹学会和学校教育的蓬勃发展


  第二节  运筹学的定义和特点


    一、运筹学的定义


    二、运筹学的性质和特点


    三、运筹学的主要分支


  第三节  运筹学的工作步骤


    一、提出和分析问题


    二、建立数学模型


    三、模型的求解


    四、对模型和由模型导出的解进行检验


    五、解的控制和方案实施


  小结


  第一章  线性规划基础


  第一节  线性规划问题及其数学模型


    一、问题的提出


    二、线性规划问题的数学模型


    三、数学模型的表达方式


  第二节  线性规划问题的标准化


  第三节  图解法


  第四节  线性规划问题解的概念


    一、解的基本概念


    二、基本定理


  小结


  案例分析


  本章自测题


第二章  单纯形法


  第一节  单纯形法基本原理


  第二节  单纯形法计算步骤及应用举例


    一、单纯形法的结构


    二、单纯形法的计算步骤


    三、应用举例


  第三节  单纯形法的进一步讨论


    一、人工变量


    二、大m法


    三、两阶段法


  第四节  单纯形法的矩阵描述


  第五节  建模应用举例


    一、生产计划问题


    二、混合配料问题


    三、人力资源问题


    四、下料问题


    五、运输问题


    六、投资问题


  小结


  案例分析


  本章自测题


第三章  对偶理论


  第一节  线性规划的对偶问题


    一、对偶问题的提出


    二、对偶问题的写法


  第二节  对偶问题的基本性质


    一、对称性


    二、弱对偶性


    三、最优性


    四、强对偶性[或称对偶定理)


    五、互补松弛性


    六、原问题单纯形表中的检验数行对应对偶问题的一个基本解


  第三节  对偶变量的经济解释——影子价格


    一、影子价格的概念


    二、影子价格的经济含义


  第四节  对偶单纯形法


    一、对偶单纯形法的基本思想


    二、对偶单纯形法的计算步骤


  小结


  案例分析


  本章自测题


第四章  灵敏度分析


  第一节  灵敏度分析的基本思路


    一、灵敏度分析的含义”


    二、灵敏度分析的基本思路


  第二节  目标函数系数变化的灵敏度分析


    一、目标函数中非基变量系数变化的灵敏度分析


    二、目标函数中基变量系数变化的灵敏度分析


  第三节  资源数量变化的灵敏度分析


  第四节  增加一个新变量的灵敏度分析


  第五节  增加一个约束条件的灵敏度分析


  第六节  工艺系数变化的灵敏度分析


    一、非基列变化的灵敏度分析


    二、基列变化的灵敏度分析


  小结


  案例分析


  本章自测题


第五章  运输问题


  第一节  运输问题的数学模型及特点


  第二节  表上作业法


    一、给定初始调运方案


    二、最优性检验


    三、方案调整


  第三节  运输问题的进一步讨论


  第四节  应用问题举例


    一、求极大值问题


    二、需求量有上下限的运输问题


    三、转运问题


  小结


  案例分析


  本章自测题


第六章  整数规划


  第一节  整数规划的数学模型及解的特点


    一、整数规划数学模型的一般形式


    二、整数规划数学模型举例


    三、整数规划解的特点


  第二节  整数规划的割平面法


  第三节  分枝定界法


  第四节  0-1型整数规划


    一、0-1变量及0-1型整数规划概述


    二、0-1型整数规划的解法


  第五节  指派问题及匈牙利法


    一、问题的提出


    二、指派问题的数学模型


    三、匈牙利法


    四、非标准形式的指派问题


  小结


  案例分析


  本章自测题


第七章  动态规划


  第一节  基本概念、基本方程与最优化原理


    一、基本概念


    二、最优化原理及基本方程


    三、基本解法


  第二节  动态规划应用


    一、资源分配问题——离散确定性的决策过程


    二、机器负荷分配问题——连续确定性的决策过程


    三、静态规划问题


  小结


  案例分析


  本章自测题


第八章  图论与网络分析


  第一节  图的基本概念


    一、图


    二、端点、关联边


    三、相邻:点相邻、边相邻


    四、环、多重边、简单图、多重图


    五、次、奇点、偶点、孤立点、悬挂点、悬挂边


    六、链、开链、闭链、简单链、初等链、圈


    七、连通图与分离图(不连通图)


    八、子图、真子图、部分图


    九、有向图、无向图


    十、网络


  第二节  最短路问题


    一、Dijksba算法


    二、算法应用举例


    三、欧拉回路与中国邮递员问题


  第三节  最大流问题


    一、最大流问题的数学模型


    二、基本概念及定理


    三、求最大流的Ford-Fulkerson算法


    四、算法应用举例


  小结


  案例分析


  本章自测题


参考文献