注册 登录 进入教材巡展
#

出版时间:2014年3月

出版社:世界图书出版公司

以下为《单纯同伦理论》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 世界图书出版公司
  • 9787510070327
  • 154773
  • 2014年3月
  • 未分类
  • 未分类
  • O189.23
内容简介
  Many of the original research and survey monographs ln pure and applied mathematics published by Birkh iuser in recent decades have been groundbreaking and have come to be regarded as found。 ational to the SUbject.Through the MBC Series,a select number ofthese modern classics,entirely uncorrected,are being released in paperback Iand as eBooks)to ensure that these treasures remainaccessible to new generations of students,scholars,and reseat-chers。
目录

Chapter l Simplicial sets


 1.Basic definitions


 2.Realization


 3.Kan complexes


 4.Anodyne extensions


 5.Function complexes


 6.Simplicial homotopy


 7.Simplicial homotopy groups


 8.Fundamental groupoid


 9.Categories of fibrant objects


 10.Minimal fibrations


 11.The closed model structure


Chapter II Model Categories


 1.Homotopical algebra


 2.Simplicial categories


 3.Simplicial model categories


 4.The existence of simplicial model category structures


 5.Examples of simplicial model categories


 6.A generalization of Theorem 4.1


 7.Quillen’S total derived functor theorem


 8.Homotopy cartesian diagrams


Chapter III Classical results and constructions


 1.The fundamental groupoid.revisited


 2.Simplicial abelian groups


 3.The Hurewicz map


 4.The Ex∞functor


 5.The Kan suspension


Chapter IV Bisimplicial sets


 1.Bisimplicial sets:first properties


 2.Bisimplicial abelian groups


 2.1.The translation object


 2.2 The generalized Eilenberg-Zilber theorem


 3.Closed model structures for bisimplicial sets


 3.1.The Bousfield-Kan structure


 3.2.The Reedy structure


 3.3.The Moerdijk structure


 4.The Bousfield—Friedlander theorem


 5.Theorem B and group completion


 5.1.The’serre spectral sequence


 5.2.Theorem B


 5.3.The group completion theorem


Chapter V Simplicial groups


 1.Skeleta


 2.Principal fibrations I:simplicial G-spaces


 3.Principal fibrations II:classifications


 4.Universal cocycles and WG


 5.The loop group construction


 6.Reduced simplicial sets,Milnor’S FK-construction


 7.Simplicial groupoids


Chapter VI The homotopy theory of towers


 1.A model category structure for towers of spaces


 2.The spectral sequence of a tower of fibrations


 3.Postnikov towers


 4.Local coefficients and equivariant cohomology


 5.On k-invariants


 6.Nilpotent spaces


Chapter VII Reedy model categories


 1.Decomposition of simplicial objects


 2.Reedy model category structures


 3.Geometric realization


 4.Cosimplicial spaces


Chapter VIII Cosimplicial spaces:applications


 1.The homotopy spectral sequence of a cosimplicial space


 2.Homotopy inverse limits


 3.Completions


 4.Obstruction theory


Chapter IX Simplicial functors and homotopy coherence


 1.Simplicial functors


 2.The Dwyer-Kan theorem


 3.Homotopy coherence


 3.1.Classical homotopy COherence


 3.2.Homotopy coherence:an expanded version


 3.3.Lax functors


 3.4.The Grothendieck construction


 4.Realization theorems


Chapter X Localization


 1.Localization with respect to a map


 2.The closed model category structure


 3.Bousfield localization.


 4.A model for the stable homotopy category


References


Index