注册 登录 进入教材巡展
#

出版时间:2015年1月

出版社:世界图书出版公司

以下为《破产概率(第2版)(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 世界图书出版公司
  • 9787510084492
  • 46618
  • 2015年1月
  • 未分类
  • 未分类
  • O211
内容简介

  阿斯姆森所著的《破产概率(第2版)(英文版)》是一部学习概率和应用概率必备的书籍,将经典破坏概率和现代破坏概率巧妙结合,全面处理了应用概率的已知结果。考虑到涉及的专题有:Lundberg不等式;Cramer-Lundberg逼近;精确解;其他逼近;有限时间的破坏概率;经典复合Poisson模型等。在新的版本里做了大量扩充和更新,新的科目话题包括随机控制、Levy过程的起伏理论、Gerber Shiu函数和独立。

目录

Preface


Notation and conventions


I Introduction


 1 The risk process


 2 Claim size distributions


 3 The arrival process


 4 A summary of main results and methods


II Martingales and simple ruin calculations


 1 Wald martingales


 2 Gambler's ruin. Two-sided ruin. Brownian motion


 3 Further simple martingale calculations


 4 More advanced martingales


III Further general tools and results


 1 Likelihood ratios and change of measure


 2 Duality with other applied probability models


 3 Random walks in discrete or continuous time


 4 Markov additive processes


 5 The ladder height distribution


IV The compound Poisson model


 1 Introduction


 2 The Pollaczeck-Khinchine formula


 3 Special cases of the Pollaczeck-Khinchine formula


 4 Change of measure via exponential families


 5 Lundberg conjugation


 6 Further topics related to the adjustment coefficient


 7 Various approximations for the ruin probability


 8 Comparing the risks of different claim size distributions


 9 Sensitivity estimates


 10 Estimation of the adjustment coefficient


V The probability of ruin within finite time


 1 Exponential claims


 2 The ruin probability with no initial reserve


 3 Laplace transforms


 4 When does ruin occur?


 5 Diffusion approximations


 6 Corrected diffusion approximations


 7 How does ruin occur?


VI Renewal arrivals


 1 Introduction


 2 Exponential claims. The compound Poisson model with negative claims


 3 Change of measure via exponential families


 4 The duality with queueing theory


VII Risk theory in a Markovian environment


 1 Model and examples


 2 The ladder height distribution


 3 Change of measure via exponential families


 4 Comparisons with the compound Poisson model


 5 The Markovian arrival process


 6 Risk theory in a periodic environment


 7 Dual queueing models


VIII Level-dependent risk processes


 1 Introduction


 2 The model with constant interest


 3 The local adjustment coefficient. Logarithmic asymptotics


 4 The model with tax


 5 Discrete-time ruin problems with stochastic investment


 6 Continuous-time ruin problems with stochastic investment


IX Matrix-analytic methods


 1 Definition and basic properties of phase-type distributions


 2 Renewal theory


 3 The compound Poisson model


 4 The renewal model


 5 Markov-modulated input


 6 Matrix-exponential distributions


 7 Reserve-dependent premiums


 8 Erlangization for the finite horizon case


X Ruin probabilities in the presence of heavy tails


 1 Subexponential distributions


 2 The compound Poisson model


 3 The renewal model


 4 Finite-horizon ruin probabilities


 5 Reserve-dependent premiums


 6 Tail estimation


XI Ruin probabilities for Levy processes


 1 Preliminaries


 2 One-sided ruin theory


 3 The scale function and two-sided ruin problems


 4 Further topics


 5 The scale function for two-sided phase-type jumps


XII Gerber-Shiu functions


 1 Introduction


 2 The compound Poisson model


 3 The renewal model


 4 Levy risk models


XIII Further models with dependence


 1 Large deviations


 2 Heavy-tailed risk models with dependent input


 3 Linear models


 4 Risk processes with shot-noise Cox intensities


 5 Causal dependency models


 6 Dependent Sparre Andersen models


 7 Gaussian models. Fractional Brownian motion


 8 Ordering of ruin probabilities


 9 Multi-dimensional risk processes


XIV Stochastic control


 1 Introduction


 2 Stochastic dynamic programming


 3 The Hamilton-Jacobi-Bellman equation


XV Simulation methodology


 1 Generalities


 2 Simulation via the Pollaczeck-Khinchine formula...


 3 Static importance sampling via Lundberg conjugation


 4 Static importance sampling for the finite horizon case


 5 Dynamic importance sampling


 6 Regenerative simulation


 7 Sensitivity analysis


XVI Miscellaneous topics


 1 More on discrete-time risk models


 2 The distribution of the aggregate claims


 3 Principles for premium calculation


 4 Reinsurance


Appendix


 A1 Renewal theory


 A2 Wiener-Hopf factorization


 A3 Matrix-exponentials


 A4 Some linear algebra


 A5 Complements on phase-type distributions


 A6 Tauberian theorems


Bibliography


Index