注册 登录 进入教材巡展
#

出版时间:2016年6月

出版社:哈尔滨工业大学出版社

以下为《线性代数与几何(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 哈尔滨工业大学出版社
  • 9787560358932
  • 137984
  • 2016年6月
  • 未分类
  • 未分类
  • O151.2
内容简介

  线性代数几何包括分析几何、仿射几何和射影几何等。在本科目中线性代数占主要地位,因为本科目的实质是线性代数。由荷兰凯珀所著的《线性代数与几何(英文版)/国外优秀数学著作原版系列》一书试图洞察作为现代代数工具的线性代数在数学中的作用。本书包括一些几何理论、初级和重要的代数概念和理论,如:向量平面、向量空间、矩阵、欧几里得空间、射影几何等内容。


  本书可供高等院校本科生、研究生及数学研究人员参考阅读。

目录

Chapter 1 VECTORS IN THE PLANE AND IN SPACE


Chapter 2 SUBSET,PRODUCT SET,RELATION AND MAPPING


Chapter 3 THE n-DIMENSIONAL VECTOR SPACE Vn


Chapter 4 THE PARAMETRIC REPRESENTATION OF A LINE


Chapter 5 SOME FUNDAMENTAL THEOREMS


 The dual vector space V*


Chapter 6 FIRST DEGREE FUNCTIONS ON,AND LINEAR VARI-ETIES IN An


Chapter 7 LINEAR FUNCTIONS AND LINES IN A2 AND An APPLI-CATIONS


 Cross-ration


 Harmonic separation


Chapter 8 A FINITE AFFINE PLANE


Chapter 9 HOMOMORPHISMS OF VECTOR SPACES


 The vector space Hom(A,B)


 Composition(multiplication)of homomorphisms


 The dual homomorphism of the dual vector spaces


Chapter 10 MATRICES


Chapter 11 SETS OF LINEAR EQUATIONS


Chapter 12 FUNCTIONS OF SEⅦRAL VARIABLES DETERMINANT


Chapter 13 APPLICATIONS OF DETERMINANTS VOLUME


Chapter 14 QUADRATIC AND SYMMETRIC BILINEAR FUNCTIONS


 A.Functions on a vector space


 AH.Hermitian functions


 B.Functions on a real affine space


Chapter 15 EUCLIDEAN SPACE


 Unitary vector space


Chapter 16 SOME APPLICATIONS IN STATISTICS


 Method of least squares,linear adjustment,regression


 The correlation coefficient


Chapter 17 CLASSIFICATION OF ENDOMORPHISMS


 Classification of endomorphisms(complex numbers)


 Endomorphisms of real vector spaces


 Symmetric endomorphisms and quadratic functions on a Euclidean vector space


 Orthogonal endomorphisms


 Hermitian endomorphisms and hermitian functions on a unitary space


Chapter 18 QUADRATIC FUNCTIONS ON AND QUADRATIC VARIETIES IN EUCLIDEAN SPACES


 Investigation of a given quadratic variety


Chapter 19 MOTIONS AND AFFINITIES


 Motions


 Classification of motions


 Morion in the euclidean plane as basic notion


 Affinities in real spaces


 Some constructions with plane affinities


Chapter 20 PROJECTIVE GEOMETRY


 Points at infinity of an affiBe plane A2


 Projective classification of quadrics(over C and R)


 Classification of collineations(over C and R)


Chapter 21 NON—EUCLIDEAN PLANES


 The hyperbolic plane


 The elliptic plane


Chapter 22 SOME TOPOLOGICAL REMARKS


Chapter 23 HINTS AND ANSWERS TO THE PROBLEMS IN CHAPTERS 3-21