注册 登录 进入教材巡展
#

出版时间:2014年7月

出版社:世界图书出版公司

以下为《割圆域导论(第2版)(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 世界图书出版公司
  • 9787510077852
  • 38458
  • 2014年7月
  • 未分类
  • 未分类
  • O156
内容简介

  华盛顿所著的《割圆域导论(第2版)(英文版)》是一部讲述数论很重要领域的教程,包括p进数L—函数、类数、割圆单元、费马最后定理和Z—p扩展Iwasawa定理。这是第二版,新增加了许多内容,如Thaine,Kolyvagin,andRubin的著作、主猜想的证明,以及一章最新其他进展。目次:费曼大定理;基本结果;狄里克莱性质;狄里克莱L级数和类数公式;p进数和伯努利数;Stickelberger定理;p进数L—函数的Iwasawa结构;割圆单元;费曼大定理第二案例;伽罗瓦群作用于理想类群上;类数1的割圆域;测度与分布。

目录

Preface to the Second Edition


Preface to the First Edition


CHAPTER I


Fermat's Last Theorem


CHAPTER 2


Basic Results


CHAPTER 3


Dirichlet Characters


CHAPTER 4


Dirichlet L-series and Class Number Formulas


CHAPTER 5


p-adic L-functions and Bernoulli Numbers


5.1. p-adic functions


5.2. p-adic L-functions


5.3. Congruences


5.4. The value at s = 1


5.5. The p-adic regulator


5.6. Applications of the class number formula


CHAPTER 6


Stickelberger's Theorem


6.1. Gauss sums


6.2. Stickelberger's theorem


6.3. Herbrand's theorem


6.4. The index of the Stickelberger ideal


6.5. Fermat's Last Theorem


CHAPTER 7


lwasawa's Construction of p-adic L-functions


7.1. Group rings and power series


7.2. p-adic L-functions


7.3. Applications


7.4. Function fields


7.5. μ=O


CHAPTER 8


Cyclotomic Units


8.1. Cyclotomic units


8.2. Proof of the p-adic class number formula


8.3. Units of O(Cp) and Vandiver's conjecture


8.4. p-adic expansions


CHAPTER 9


The Second Case of Fermat's Last Theorem


9.1. The basic argument


9.2. The theorems


CHAPTER 10


Galois Groups Acting on Ideal Class Groups


10.1. Some theorems on class groups


10.2. Reflection theorems


10.3. Consequences of Vandiver's conjecture


CHAPTER I 1


Cyclotomic Fields of Class Number One


11.1. The estimate for even characters


l1.2. The estimate for all characters


11.3. The estimate for hm,


11.4. Odlyzko's bounds on discriminants


11.5. Calculation of hm+


CHAPTER 12


Measures and Distributions


12.1. Distributions


12.2. Measures


12.3. Universal distributions


CHAPTER 13


Iwasawa's Theory of Zp-extensions


13.1. Basic facts


13.2. The structure of A-modules


13.3. Iwasawa's theorem


13.4. Consequences


13.5. The maximal abelian p-extension unramifiexl outside p


13.6. The main conjecture


13.7. Logarithmic derivatives


13.8. Local units modulo cyclotomi~ units


CHAPTER 14


The Kronecker-Weber Theorem


CHAPTER 15


The Main Conjecture and Annihilation of Class Groups


15.1. Stickelberger's theorem


15.2. Thaine's theorem


15.3. The converse of Herbrand's theorem


15.4. The Main Conjecture


15.5. Adjoints


15.6. Technical results from Iwasawa theory


15.7. Proof of the Main Conjecture


CHAPTER 16


Misccllany


16.1. Primality testing using Jacobi sums


16.2. Sinnott's proof thatμ= 0


16.3. The non-p-part of the class number in a Zp-extension


Appendix


1. Inverse limits


2. Infinite Galois theory and ramification theory


3. Class field theory


Tables


1. Bernoulli numbers


2. Irregular primes


3. Relative class numbers


4. Real class numbers


Bibliography


List of Symbols


Index