注册 登录 进入教材巡展
#

出版时间:2015年1月

出版社:世界图书出版公司

以下为《量子相变(第2版)(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 世界图书出版公司
  • 9787510084478
  • 126413
  • 2015年1月
  • 未分类
  • 未分类
  • O4
内容简介

  萨奇德夫所著的《量子相变(第2版)(英文版)》是第一本系统介绍量子相变理论的专著,其中部分内容也可作研究生教材。本书内容新颖,涉及凝聚态物理学中广泛关注的许多重要问题。本书叙述简明,将理论模型的阐述与最新实验结果的介绍密切结合。书中着重描写和阐述存在量子相变的一些最简单的相互作用系统的物理性质。全书大部分均忽略了无序效应,而把注意力集中在这样一些系统在非零温度下的动力学性质,深入讨论了以非弹性碰撞为主的量子动力学及输运过程。

目录

From the Preface to the first edition


Preface to the second edition


Part I Introduction


 1 Basic concepts


  1.1 What is a quantum phase transition?


  1.2 Nonzero temperature transitions and crossovers


  1.3 Experimental examples


  1.4 Theoretical models


   1.4.1 Quantum Ising model


   1.4.2 Quantum rotor model


   1.4.3 Physical realizations of quantum rotors


 2 Overview


  2.1 Quantum field theories


  2.2 What's different about quantum transitions?


Part II A first course


 3 Classical phase transitions


  3.1 Mean-field theory


  3.2 Landau theory


  3.3 Fluctuations and perturbation theory


   3.3.1 Gaussian integrals


   3.3.2 Expansion for susceptibility


  Exercises


 4 The renormalization group


  4.1 Gaussian theory


  4.2 Momentum shell RG


  4.3 Field renormalization


  4.4 Correlation functions


  Exercises


 5 The quantum Ising model


  5.1 Effective Hamiltonian method


  5.2 Large-g expansion


   5.2.1 One-particle states


   5.2.2 Two-particle states


  5.3 Small-g expansion


   5.3.1 d=2


   5.3.2 d=l


  5.4 Review


  5.5 The classical Ising chain


   5.5.1 The scaling limit


   5.5.2 Universality


   5.5.3 Mapping to a quantum model: Ising spin in a transverse field


  5.6 Mapping of the quantum Ising chain to a classical Ising model


  Exercises


 6 The quantum rotor model


  6.1 Large-g expansion


  6.2 Small-g expansion


  6.3 The classical XY chain and an O(2) quantum rotor


  6.4 The classical Heisenberg chain and an O(3) quantum rotor


  6.5 Mapping to classical field theories


  6.6 Spectrum of quantum field theory


   6.6.1 Paramagnet


   6.6.2 Quantum critical point


   6.6.3 Magnetic order


  Exercises


 7 Correlations, susceptibilities, and the quantum critical point


  7.1 Spectral representation


   7.1.1 Structure factor


   7.1.2 Linear response


  7.2 Correlations across the quantum critical point


   7.2.1 Paramagnet


   7.2.2 Quantum critical point


   7.2.3 Magnetic order


  Exercises


 8 Broken symmetries


  8.1 Discrete symmetry and surface tension


  8.2 Continuous symmetry and the helicity modulus


   8.2.1 Order parameter correlations


  8.3 The London equation and the superfluid density


   8.3.1 The rotor model


   Exercises


 9 Boson Hubbard model


  9.1 Mean-field theory


  9.2 Coherent state path integral


   9.2.1 Boson coherent states


  9.3 Continuum quantum field theories


  Exercises


Part III Nonzero temperatures


 10 The Ising chain in a transverse field


  10.1 Exact spectrum


  10.2 Continuum theory and scaling transformations


  10.3 Equal-time correlations of the order parameter


  10.4 Finite temperature crossovers


  10.4.1 Low T on the magnetically ordered side, A > 0, T << A


  10.4.2 Low T on the quantum paramagnetic side, A < 0, T << |△|


  10.4.3 Continuum high T, T >> |△|


  10.4.4 Summary


 11 Quantum rotor models: large-N limit


  11.1 Continuum theory and large-N limit


  11.2 Zero temperature


  11.2.1 Quantum paramagnet, g > gc


  11.2.2 Critical point, g = gc


  11.2.3 Magnetically ordered ground state, g < gc


  11.3 Nonzero temperatures


   11.3.1 Low T on the quantum paramagnetic side, g > gc, T << △+


   11.3.2 High T, T>>△+, △_


   11.3.3 Low T on the magnetically ordered side, g < gc, T << △_


  11.4 Numerical studies


 12 The d = 1, 0(N > 3) rotor models


  12.1 Scaling analysis at zero temperature


  12.2 Low-temperature limit of the continuum theory, T << △+


  12.3 High-temperature limit of the continuum theory, △+ << T << J


   12.3.1 Field-theoretic renormalization group


   12.3.2 Computation of Xu


   12.3.3 Dynamics


  12.4 Summary


 13 The d = 2, 0(N ≥ 3) rotor models


  13.1 Low T on the magnetically ordered side, T << ρs


   13.1.1 Computation of ξc


   13.1.2 Computation of τ


   13.1.3 Structure of correlations


  13.2 Dynamics of the quantum paramagnetic and high-T regions


   13.2.1 Zero temperature


   13.2.2 Nonzero temperatures


  13.3 Summary


 14 Physics dose to and above the upper-critical dimension


  14.1 Zero temperature


   14.1.1 Tricritical crossovers


   14.1.2 Field-theoretic renormalization group


  14.2 Statics at nonzero temperatures


   14.2.1 d < 3


   14.2.2 d > 3


  14.3 Order parameter dynamics in d = 2


  14.4 Applications and extensions


 15 Transport in d = 2


  15.1 Perturbation theory


   15.1.1 σ1


   15.1.2 σ11


  15.2 Collisionless transport equations


  15.3 Collision-dominated transport


   15.3.1 ε expansion


   15.3.2 Large-N limit


  15.4 Physical interpretation


  15.5 The AdS/CFT correspondence


   15.5.1 Exact results for quantum critical transport


   15.5.2 Implications


  15.6 Applications and extensions


Part IV Other models


 16 Dilute Fermi and Bose gases


  16.1 Thequantum XX model


  16.2 The dilute spinless Fermi gas


   16.2.1 Dilute classical gas, kBT << |μ|, μ < 0


   16.2.2 Fermi liquid, kBT <<μ, μ > 0


   16.2.3 High-T limit, kBT >> |μ|


  16.3 The dilute Bose gas


   16.3.1 d < 2


   16.3.2 d = 3


   16.3.3 Correlators of ZB in d = 1


  16.4 The dilute spinful Fermi gas: the Feshbach resonance


   16.4.1 The Fermi-Bose model


   16.4.2 Large-N expansion


  16.5 Applications and extensions


 17 Phase transitions of Dirac fermions


  17.1 d-wave superconductivity and Dirac fermions


  17.2 Time-reversal symmetry breaking


  17.3 Field theory and RG analysis


  17.4 Ising-nematic ordering


 18 Fermi liquids, and their phase transitions


  18.1 Fermi liquid theory


  18.1.1 Independence of choice of k0


  18.2 Ising-nematic ordering


   18.2.1 Hertz theory


   18.2.2 Fate of the fermions


   18.2.3 Non-Fermi liquid criticality in d = 2


  18.3 Spin density wave order


   18.3.1 Mean-field theory


   18.3.2 Continuum theory


   18.3.3 Hertz theory


   18.3.4 Fate of the fermions


   18.3.5 Critical theory in d = 2


  18.4 Nonzero temperature crossovers


  18.5 Applications and extensions


 19 Heisenberg spins: fetromagnets and antiferromagnets


  19.1 Coherent state path integral


  19.2 Quantized ferromagnets


  19.3 Antiferromagnets


   19.3.1 Collinear antiferromagnetism and the quantum nonlinear sigma model


   19.3.2 Collinear antiferromagnetism in d = 1


   19.3.3 Collinear antiferromagnetism in d = 2


   19.3.4 Noncollinear antiferromagnetism in d= 2: deconfined spinons and visons


   19.3.5 Deconfined criticality


  19.4 Partial polarization and canted states


   19.4.1 Quantum paramagnet


   19.4.2 Quantized ferromagnets


   19.4.3 Canted and Neel states


   19.4.4 Zero temperature critical properties


  19.5 Applications and extensions


 20 Spin chains: bosonization


  20.1 The XX chain revisited: bosonization


  20.2 Phases of H12


   20.2.1 Sine-Gordon model


   20.2.2 Tomonaga-Luttinger liquid


   20.2.3 Valence bond solid order


   20.2.4 Neel order


   20.2.5 Models with SU(2) (Heisenberg) symmetry


   20.2.6 Critical properties near phase boundaries


  20.3 O(2) rotor model in d = 1


  20.4 Applications and extensions


 21 Magnetic ordering transitions of disordered systems


  21.1 Stability of quantum critical points in disordered systems


  21.2 Griffiths-McCoy singularities


  21.3 Perturbative field-theoretic analysis


  21.4 Metallic systems


  21.5 Quantum Ising models near the percolation transition


   21.5.1 Percolation theory


   21.5.2 Classical dilute Ising models


   21.5.3 Quantum dilute Ising models


  21.6 The disordered quantum Ising chain


  21.7 Discussion


  21.8 Applications and extensions


 22 Quantum spin glasses


  22.1 The effective action


   22.1.1 Metallic systems


  22.2 Mean-field theory


  22.3 Applications and extensions


 References


 Index