注册 登录 进入教材巡展
#
  • #

出版时间:2014年5月

出版社:哈尔滨工业大学出版社

以下为《解析数论问题集(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 哈尔滨工业大学出版社
  • 9787560346885
  • 1-1
  • 181276
  • 0042166158-8
  • 2014年5月
  • 理学
  • 数学
  • O156.4
  • 数学类
  • 研究生、本科
内容简介
默尔蒂所著的《解析数论问题集(第2版)(英文版)》为一本原版引进的图书,是一本关于解析数论的问题集。本书主要由两部分构成:解析数论问题及相关答案。作者给出了许多独特的解法,可令读者轻松掌握关于解析数论的相关知识及问题。本书即可作为教材,又可作为专著,适合大学师生、研究员或数学爱好者参考使用。
目录

Preface to the Second Edition


Acknowledgments for the Second Edition


Preface to the First Edition


Acknowledgments for the First Edition


I  Problems


1  Arithmetic Functions


  1.1  The Mobius Inversion Formula and Applications


  1.2  Formal Dirichlet Series


  1.3  Orders of Some Arithmetical Functions


  1.4  Average Orders of Arithmetical Functions


  1.5  Supplementary Problems


2  Primes in Arithmetic Progressions


  2.1  Summation Techniques


  2.2  Characters mod q


  2.3  Dirichlet's Theorem


  2.4  Dirichlet's Hyperbola Method


  2.5  Supplementary Problems


3  The Prime Number Theorem


  3.1  Chebyshev's Theorem


  3.2  Nonvanishing of Dirichlet Series on Re(s) = 1


  3.3  The Ikehara - Wiener Theorem


  3.4  Supplementary Problems


4  The Method of Contour Integration


  4.1  Some Basic Integrals


  4.2  The Prime Number Theorem


  4.3  Further Examples


  4.4  Supplementary Problems


5  Functional Equations


  5.1  Poisson's Summation Formula


  5.2  The Riemann Zeta Function


  5.3  Gauss Sums


  5.4  Dirichlet L-functions


  5.5  Supplementary Problems


6  Hadamard Products


  6.1  Jensen's Theorem


  6.2  Entire Functions of Order I


  6.3  The Gamma Function


  6.4  Infinite Products for ξ(s) and ξ(s, X)


  6.5  Zero-Free Regions for □(s) and G(s, X)


  6.6  Supplementary Problems


7  Explicit Formulas


  7.1  Counting Zeros


  7.2  Explicit Formula for ψ(x)


  7.3  Weil's Explicit Formula


  7.4  Supplementary Problems


8  The Selberg Class


  8.1  The Phragmen- Lindelof Theorem


  8.2  Basic Properties


  8.3  Selberg's Conjectures


  8.4  Supplementary Problems


9  Sieve Methods


  9.1  The Sieve of Eratosthenes


  9.2  Brun's Elementary Sieve


  9.3  Selberg's Sieve


  9.4  Supplementary Problems


10  p-adic Methods


  10.10strowski's Theorem


  10.2 Hensel's Lemma


  10.3 p-adic Interpolation


  10.4 The p-adic Zeta-Function


  10.5 Supplementary Problems


11  Equidistribution


  11.1 Uniform distribution modulo 1


  11.2 Normal numbers


  11.3 Asymptotic distribution functions mod 1


  11.4 Discrepancy


  11.5 Equidistribution and L-functions


  11.6 Supplementary Problems


II  Solutions


1  Arithmetic Functions


  1.1  The Mobius Inversion Formula and Applications


  1.2  Formal Dirichlet Series


  1.3  Orders of Some Arithmetical Functions


  1.4  Average Orders of Arithmetical Functions


  1.5  Supplementary Problems


2  Primes in Arithmetic Progressions


  2.1  Characters mod q


  2.2  Dirichlet's Theorem


  2.3  Dirichlet's Hyperbola Method


  2.4  Supplementary Problems


3  The Prime Number Theorem


  3.1  Chebyshev's Theorem


  3.2  Nonvanishing of Dirichlet Series on Re(s) = 1


  3.3  The Ikehara - Wiener Theorem


  3.4  Supplementary Problems


4  The Method of Contour Integration


  4.1  Some Basic Integrals


  4.2  The Prime Number Theorem


  4.3  Further Examples


  4.4  Supplementary Problems


5  Functional Equations


  5.1  Poisson's Summation Formula


  5.2  The Riemann Zeta Function


  5.3  Gauss Sums


  5.4  Dirichlet L-functions


  5.5  Supplementary Problems


6  Hadamard Products


  6.1  Jensen's theorem


  6.2  The Gamma Function


  6.3  Infinite Products for ξ(s) and ξ(s, X)


  6.4  Zero-Free Regions for □(s) and L(s, X)


  6.5  Supplementary Problems


7  Explicit Formulas


  7.1  Counting Zeros


  7.2  Explicit Formula for ψ(x)


  7.3  Supplementary Problems


8  The Selberg Class


  8.1  The Phragmen - Lindelof Theorem


  8.2  Basic Properties


  8.3  Selberg's Conjectures


  8.4  Supplementary Problems


9  Sieve Methods


  9.1  The Sieve of Eratosthenes


  9.2  Brun's Elementary Sieve


  9.3  Selberg's Sieve


  9.4  Supplementary Problems


10 p-adic Methods


  10.10strowski's Theorem


  10.2 Hensel's Lemma


  10.3 p-adic Interpolation


  10.4 The p-adic □-Function


  10.5 Supplementary Problems


11 Equidistribution


  11.1 Uniform distribution modulo I


  11.2 Normal numbers


  11.3 Asymptotic distribution functions mod 1


  11.4 Discrepancy


  11.5 Equidistribution and L-functio