注册 登录 进入教材巡展
#

出版时间:2015年5月

出版社:世界图书出版公司

以下为《工程与科学中的线性算子理论(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 世界图书出版公司
  • 9787510095566
  • 167390
  • 2015年5月
  • 未分类
  • 未分类
  • O177
内容简介
该书旨在为工程师、科研工作者和应用数学工作者提供适用于他们的泛函分析的基础知识。尽管书中采取的是定义-定理-证明的数学模式,但是该书在所涵盖知识点的选取和解释说明方面还是下了很大的功夫。该书也可以被用作高级教程,为了便于不同知识背景的学生学习,书中附录部分涵盖了许多有益的数学课题。

读者对象:工程学、形式科学和数学方面的学生以及工程师、科研工作者和应用数学工作者。
目录

Preface


 Chapter 1 Introduction


  1. Black Boxes


  2. Structure of the Plane


  3. Mathematical Modeling


  4. The Axiomatic Method. The


  Process of Abstraction


  5. Proofs of Theorems


 Chapter 2 Set-Theoretic Structure


  1. Introduction


  2. Basic Set Operations


  3. Cartesian Products


  4. Sets of Numbers


  5. Equivalence Relations and


  Partitions


  6. Functions


  7. Inverses


  8. Systems Types


 Chapter 3 Topological Structure


  1. Introduction


  Port A Introduction to Metric Spaces


  2. Metric Spaces: Definition


  3. Examples of Metric Spaces


  4. Subspaces and Product Spaces


  5. Continuous Functions


  6. Convergent Sequences


  7. A Connection Between


  Continuity and Convergence


  Part B Some Deeper Metric


  Space Concepts


  8. Local Neighborhoods


  9. Open Sets


  10. More on Open Sets


  11. Examples of Homeomorphic


  Metric Spaces


  12. Closed Sets and the Closure


  Operation


  13. Completeness


  14. Completion of Metric Spaces


  15. Contraction Mapping


  16. Total Boundexlness and


  Approximations


  17. Compactness


 Chapter 4 Algebraic Structure


  1. Introduction


  Part A Introduction to Linear Spaces


  2. Linear Spaces and Linear


  Subspaces


  3. Linear Transformations


  4. Inverse Transformations


  5. Isomorphisms


  6. Linear Independence and


  Dependence


  7. Hamel Bases and Dimension


  8. The Use of Matrices to Represent


  Linear Transformations


  9. Equivalent Linear


  Transformations


  Part B Further Topics


  10. Direct Sums and Sums


  11. Projections


  12. Linear Functionals and the Alge-


  braic Conjugate of a Linear Space


  13. Transpose of a Linear


  Transformation


 Chapter 5 Combined Topological


  and Algebraic Structure


  1. Introduction


  Part A Banach Spaces


  2. Definitions


  3. Examples of Normal Linear


  Spaces


  4. Sequences and Series


  5. Linear Subspaces


  6. Continuous Linear


  Transformations


  7. Inverses and Continuous Inverses


  8. Operator Topologies


  9. Equivalence of Normed Linear


  Spaces


  10. Finite-Dimensional Spaces


  11. Normed Conjugate Space and


  Conjugate Operator


  Part B Hilbert Spaces


  12. Inner Product and HUbert Spaces


  13. Examples


  14. Orthogonality


  15. Orthogonal Complements and the


  Projection Theorem


  16. Orthogonal Projections


  17. Orthogonal Sets and Bases:


  Generalized Fourier Series


  18. Examples of Orthonormal Bases


  19. Unitary Operators and Equiv-


  alent Inner Product Spaces


  20. Sums and Direct Sums of


  Hilbert Spaces


  21. Continuous Linear Functionals


  Part C Special Operators


  22. The Adjoint Operator


  23. Normal and Self-Adjoint


  Operators


  24. Compact Operators


  25. Foundations of Quantum


  Mechanics


 Chapter 6 Analysis of Linear Oper-


  ators (Compact Case)


  1. Introductioa


  Part A An Illustrative Example


  2. Geometric Analysis of Operators


  3. Geometric Analysis. The Eigen-


  value-Eigenvector Problem


  4. A Finite-Dimensional Problem


  Part B The Spectrum


  5. The Spectrum of Linear


  Transformations


  6. Examples of Spectra


  7. Properties of the Spectrum


  Part C Spectral Analysis


  8. Resolutions of the Identity


  9. Weighted Sums of Projections


  10. Spectral Properties of Compact,


  Normal, and Self-Adjoint


  Operators


  11. The Spectral Theorem


  12. Functions of Operators


  (Operational Calculus)


  13. Applications of the Spectral


  Theorem


  14. Nonnormal Operators


 Chapter 7 Analysis of Unbounded


  Operators


  1. Introduction


  2. Green's Functions


  3. Symmetric Operators


  4. Examples of Symmetric


  Operators


  5. Sturmiouville Operators


  6. Ghrding's Inequality


  7. EUiptie Partial Differential


  Operators


  8. The Dirichlet Problem


  9. The Heat Equation and Wave


  Equation


  10. Self-Adjoint Operators


  11. The Cayley Transform


  12. Quantum Mechanics, Revisited


  13. Heisenberg Uncertainty Principle


  14. The Harmonic Oscillator


  Appendix ,4 The H61der, Schwartz,


  and Minkowski


  Inequalities


  Appendix B Cardinality


  Appendix C Zom's temnm


  Appendix D Integration and


  Measure Theory


  1. Introduction


  2. The Riemann Integral


  3. A Problem with the Riemann


  Integral


  4. The Space Co


  5. Null Sets


  6. Convergence Almost Everywhere


  7. The Lebesgue Integral


  8. Limit Theorems


  9. Miscellany


  10. Other Definitions of the Integral


  11. The Lebesgue Spaces,


  12. Dense Subspaees of


  13. Differentiation


  14. The Radon-Nikodym Theorem


  15. Fubini Theorem


  Appendix E Probability Spaces and


  Stochastic Processes


  1. Probability Spaces


  2. Random Variables and


  Probability Distributions


  3. Expectation


  4. Stochastic Independence


  5. Conditional Expectation Operator


  6. Stochastic Processes


  Index of Symbols


  Index