注册 登录 进入教材巡展
#
  • #

出版时间:2014年10月

出版社:高等教育出版社

以下为《复杂网络引论——模型、结构与动力学(第2版)(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040406054
  • 1版
  • 164991
  • 0045155689-8
  • 16开
  • 2014年10月
  • 400
  • 工学
  • 计算机科学与技术
  • TH111
  • 信息、电子、计算机类
  • 研究生、本科
内容简介
陈关荣、汪小帆、李翔编著的《复杂网络引论——模型结构与动力学(第2版英文版)》是为自然科学、数学和工程领域的研究生以及本科高年级学生编写的—本入门教科书,在第一版的基础上补充、修订而成,可以作为一个学期教学使用的讲义,也可以作为科研参考书或自学读物。
全书包括两大部分内容:第一部分是基础理论,包括背景材料和信息并附有适量的练习题,旨在让读者熟悉一些最基本的建模方法和分析技巧。第二部分是应用选题,包括复杂网络在几个代表性领域中的应用研究,这些章节彼此相对独立。最后一章是近年来比较活跃的几个前沿研究课题的简介。各章均附有详细的关键文献,以帮助有兴趣的读者能够很快地进入这些研究领域。
本书保持了第一版的特色,通俗易懂,侧重于主要思想和基本方法的介绍,具有初等微积分、线性代数和常微分方程的读者能够轻松地学习书中的主要内容。同时增加了部分新内容,包括基本数理统计和动力系统基础、网络社团结构、网络博弈等。
目录

Part I FUNDAMENTAL THEORY


1  Introduction


  1.1  Background and Motivation


  1.2  A Brief History of Complex Network Research


    1.2.1  The Konigsburg SevenBridge Problem


    1.2.2  Random Graph Theory


    1.2.3  SmallWorld Experiments


    1.2.4  Strengths of Weak Ties


    1.2.5  Heterogeneity and the WWW


  1.3  New Era of ComplexNetwork Studies


  Exercises


  References


2  Preliminaries


  2.1  Elementary Graph Theory


    2.1.1  Background


    2.1.2  Basic Concepts


    2.1.3  Adjacency, Incidence and Laplacian Matrices


    2.1.4  Degree Correlation and Assortativity


    2.1.5  Some Basic Results on Graphs


    2.1.6  Eulerian and Hamiltonian Graphs


    2.1.7  Plane and Planar Graphs


    2.1.8  Trees and Bipartite Graphs


    2.I.9  Directed Graphs


    2.1.10  Weighted Graphs


    2.1.11  Some Applications


  2.2  Elementary Probability and Statistics


    2.2.1  Probability Preliminaries


    2.2.2  Statistics Preliminaries


    2.2.3  Law of Large Numbers and Central Limit Theorem


    2.2.4  Markov Chains


  2.3  Elementary Dynamical Systems Theory


    2.3.1  Background and Motivation


    2.3.2  Some Analytical Tools


    2.3.3  Chaos in Nonlinear Systems


    2.3.4  KolmogorovSinai Entropy


    2.3.5  Some Examples of Chaotic Systems


    2.3.6  Stabilities of Nonlinear Systems


  Exercises


  References


3  Network Topologies: Basic Models and Properties


  3.1  Introduction


  3.2  Regular Networks


  3.3  ER RandomGraph Model


  3.4  SmallWorld Network Models


    3.4.1  WS SmallWorld Network Model


    3.4.2  NW SmalL World Network Model


    3.4.3  Statistical Properties of SmallWorld Network Models


  3.5  Navigable SmallWorld Network Model


  3.6  ScaleFree Network Models


    3.6.1  BA ScaleFree Network Model


    3.6.2  Robustness versus Fragility


    3.6.3  Modified BA Models


    3.6.4  A Simple Model with PowerLaw Degree Distribution


    3.6.5  LocalWorld and MultiLocalWorld Network Models


  Exercises


  References


Part II  APPLICATIONS  SELECTED TOPICS


4  Internet: Topology and Modeling


  4.1  Introduction


  4.2  Topological Properties of the Internet


    4.2.1  PowerLaw NodeDegree Distribution


    4.2.2  Hierarchical Structure


    4.2.3  RichClub Structure


    4.2.4  Disassortative Property


    4.2.5  Coreness and Betweenness


    4.2.6  Growth of the lnternet


    4.2.7  RouterLevel lnternet Topology


    4.2.8  Geographic Layout of the lnternet


  4.3  RandomGraph Network Topology Generator


  4.4  Structural Network Topology Generators


    4.4.1  Tiers Topology Generator


    4.4.2  TransitStub Topology Generator


  4.5  ConnectivityBased Network Topology Generators


    4.5.1  lnet


    4.5.2  BRITE Model


    4.5.3  GLP Model


    4.5.4  PFP Model


    4.5.5  TaNc, Model


  4.6  MultiLocalWorld Model


    4.6.1  Theoretical Considerations


    4.6.2  Numerical Results with Comparison


    4.6.3  Performance Comparison


  4.7  HOT Model


  4.8  Dynamical Behaviors of the Internet Topological Characteristics


  4.9  Traffic Fluctuation on Weighted Networks


    4.9.1  Weighted Networks


    4,9.2  GRD Model


    4.9.3  Data Traffic Fluctuations


  References


5  Epidemic Spreading Dynamics


  5.1  Introduction


  5.2  Epidemic Threshold Theory


    5.2.1  Epidemic (SI, SIS, SIR) Models


    5.2.2  Epidemic Thresholds on Homogenous Networks


    5.2.3  Statistical Data Analysis


    5.2.4  Epidemic Thresholds on Heterogeneous Networks


    5.2.5  Epidemic Thresholds on BA Networks


    5.2.6  Epidemic Thresholds on FiniteSized ScaleFree Networks


    5.2.7  Epidemic Thresholds on Correlated Networks


    5.2.8  SIR Model qf Epidemic Spreading


    5.2.9  Epidemic Spreading on Quenched Networks


  5.3  Epidemic Spreading on Spatial Networks


    5.3.1  Spatial Networks


    5.3.2  Spatial Network Models for Infectious Diseases


    5.3.3  Impact of Spatial Clustering on Disease Transmissions


    5,3.4  LargeScale Spatial Epidemic Spreading


    5.3.5  Impact of Human Locat