量子计算与量子信息(10周年版) / 国际著名物理图书——影印版系列
作者: [美]迈克尔 A.尼尔森
出版时间:2015年10月
出版社:清华大学出版社
- 清华大学出版社
- 9787302394853
- 1-1
- 48904
- 0045168696-8
- 16开
- 2015年10月
- 理学
- 物理学
- O413.1
- 物理学、信息科学、数学
- 研究生、本科
全书分三大部分。第1部分为基本概念,介绍了量子计算与量子信息领域的主要思想和成果,以及进入本领域所必需的数学、量子力学和计算机科学基础知识。第2部分讲述量子计算,包括量子算法及其物理实现。第3部分为量子信息论,主要介绍量子纠错码和量子信息论的数学框架,其中还包括了量子密码的基础内容。
书中配有大量练习和习题,每章末尾均有“本章小结”以及“历史和进一步阅读的资料”,书末还附有多个附录及参考文献,可帮助读者深入理解书中的主要内容,补充必要的背景知识,并为读者进一步深入学习提供了有益的线索。
Introduction to the Tenth Anniversary Edition
Afterword to the Tenth Anniversary Edition
Preface
Acknowledgements
Nomenclature and notation
Part I Fundamental concepts
1 Introduction and overview
1.1 Global perspectives
1.1.1 History of quantum computation and quantum information
1.1.2 Future directions
1.2 Quantum bits
1.2.1 Multiple qubits
1.3 Quantum computation
1.3.1 Single qubit gates
1.3.2 Multiple qubit gates
1.3.3 Measurements in bases other than the computational basis
1.3.4 Quantum circuits
1.3.5 Qubit copying circuit?
1.3.6 Example: Bell states
1.3.7 Example: quantum teleportation
1.4 Quantum algorithms
1.4.1 Classical computations on a quantum computer
1.4.2 Quantum parallelism
1.4.3 Deutsch’s algorithm
1.4.4 The Deutsch–Jozsa algorithm
1.4.5 Quantum algorithms summarized
1.5 Experimental quantum information processing
1.5.1 The Stern–Gerlach experiment
1.5.2 Prospects for practical quantum information processing
1.6 Quantum information
1.6.1 Quantum information theory: example problems
1.6.2 Quantum information in a wider context
2 Introduction to quantum mechanics
2.1 Linear algebra
2.1.1 Bases and linear independence
2.1.2 Linear operators and matrices
2.1.3 The Pauli matrices
2.1.4 Inner products
2.1.5 Eigenvectors and eigenvalues
2.1.6 Adjoints and Hermitian operators
2.1.7 Tensor products
2.1.8 Operator functions
2.1.9 The commutator and anti-commutator
2.1.10 The polar and singular value decompositions
2.2 The postulates of quantum mechanics
2.2.1 State space
2.2.2 Evolution
2.2.3 Quantum measurement
2.2.4 Distinguishing quantum states
2.2.5 Projective measurements
2.2.6 POVM measurements
2.2.7 Phase
2.2.8 Composite systems
2.2.9 Quantum mechanics: a global view
2.3 Application: superdense coding
2.4 The density operator
2.4.1 Ensembles of quantum states
2.4.2 General properties of the density operator
2.4.3 The reduced density operator
2.5 The Schmidt decomposition and purifications
2.6 EPR and the Bell inequality
3 Introduction to computer science
3.1 Models for computation
3.1.1 Turing machines
3.1.2 Circuits
3.2 The analysis of computational problems
3.2.1 How to quantify computational resources
3.2.2 Computational complexity
3.2.3 Decision problems and the complexity classes P and NP
3.2.4 A plethora of complexity classes
3.2.5 Energy and computation
3.3 Perspectives on computer science
Part II Quantum computation
4 Quantum circuits
4.1 Quantum algorithms
4.2 Single qubit operations
……
5 The quantum Fourier transform and its applications
6 Quantum search algorithms
7 Quantum computers: physical realization
Part III Quantum information
8 Quantum noise and quantum operations
9 Distance measures for quantum information
10 Quantum error-correction
11 Entropy and information
12 Quantum information theory
Appendices
Bibliography
Index