注册 登录 进入教材巡展
#
  • #

出版时间:2016年7月

出版社:高等教育出版社

以下为《多智能代理系统中的交互——公平性、社会最优与个体理性(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040441116
  • 1版
  • 164620
  • 0045176188-6
  • 16开
  • 2016年7月
  • 240
  • 178
  • 工学
  • 计算机科学与技术
  • TP18
  • 计算机类
  • 研究生
内容简介
多智能体系统可以看作由多个具有自主决策能力的软件智能体组成,各智能体之间会直接或间接地相互作用和影响。通常可以把多智能体系统分为两大类:合作式多智能体系统和非合作式多智能体系统,前者研究的核心问题是各智能体如何利用有限的局部信息,通过自主学习有效协作达到最优的共同目标;而后者一个重要问题是如何采用有效激励机制,促使各智能体主动协调合作,从而最大化系统的整体性能。
郝建业、梁浩锋著的《多智能代理系统中的交互--公平性社会最优与个体理性》将涵盖以公平性、个体利益最大化以及社会利益最大化为目标的多智能体协调合作理论与技术,结合不同优化目标,介绍最新的多智能体学习算法和激励机制研究进展。本书适用于对多智能体系统设计理论感兴趣的读者,也可作为从事多智能体系统及博弈论理论研究的研究生或科研人员的参考书籍,对从事多智能体系统软件开发人员也具有一定的参考价值。
目录

1  Introduction


  1.1  Overview of the Chapters


  1.2  Guide to the Book


  References


2  Background and Previous Work


  2.1  Background


    2.1.1  Single-Shot Normal-Form Game


    2.1.2  Repeated Games


  2.2  Cooperative Multiagent Systems


    2.2.1  Achieving Nash Equilibrium


    2.2.2  Achieving Fairness


    2.2.3  Achieving Social Optimality


  2.3  Competitive Multiagent Systems


    2.3.1  Achieving Nash Equilibrium


    2.3.2  Maximizing Individual Benefits


    2.3.3  Achieving Pareto-Optimality


  References


3  Fairness in Cooperative Multiagent Systems


  3.1  An Adaptive Periodic Strategy for Achieving Fairness


    3.1.1  Motivation


    3.1.2  Problem Specification


    3.1.3  An Adaptive Periodic Strategy


    3.1.4  Properties of the Adaptive Strategy


    3.1.5  Experimental Evaluations


  3.2  Game-Theoretic Fairness Models


    3.2.1  Incorporating Fairness into Agent Interactions


  Modeled as Two-Player Normal-Form Games


    3.2.2  Incorporating Fairness into Infinitely Repeated


  Games with Conflicting Interests for Conflict Elimination


  References


4  Social Optimality in Cooperative Multiagent Systems


  4.1  Reinforcement Social Learning of Coordination


  in Cooperative Games


    4.1.1  Social Learning Framework


    4.1.2  Experimental Evaluations


  4.2  Reinforcement Social Learning of Coordination


  in General-Sum Games


    4.2.1  Social Learning Framework


    4.2.2  Analysis of the Learning Performance Under


  the Social Learning Framework


    4.2.3  Experimental Evaluations


  4.3  Achieving Socially Optimal Allocations Through Negotiation


    4.3.1  Multiagent Resource Allocation Problem


  Through Negotiation


    4.3.2  The APSOPA Protocol to Reach Socially Optimal


  Allocation


    4.3.3  Convergence of APSOPA to Socially Optimal Allocation..


    4.3.4  Experimental Evaluation


  References


5  Individual Rationality in Competitive Multiagent Systems


  5.1  Introduction


  5.2  Negotiation Model


  5.3  ABiNeS: An Adaptive Bilateral Negotiating Strategy


    5.3.1  Acceptance-Threshold (AT) Component


    5.3.2  Next-Bid (NB) Component


    5.3.3  Acceptance-Condition (AC) Component


    5.3.4  Termination-Condition (TC) Component


  5.4  Experimental Simulations and Evaluations


    5.4.1  Experimental Settings


    5.4.2  Experimental Results and Analysis: Efficiency


    5.4.3  Detailed Analysis of ABiNeS Strategy


    5.4.4  The Empirical Game-Theoretic Analysis: Robustness


  5.5  Conclusion


  References


6  Social Optimality in Competitive Multiagent Systems


  6.1  Achieving Socially Optimal Solutions in the Context


  of Infinitely Repeated Games


    6.1.1  Learning Environment and Goal


    6.1.2  TaFSO: A Learning Approach Toward SOSNE Outcomes:


    6.1.3  Experimental Simulations


  6.2  Achieving Socially Optimal Solutions in the Social


  Learning Framework


    6.2.1  Social Learning Environment and Goal


    6.2.2  Learning Framework


    6.2.3  Experimental Simulations


  References


7  Conclusion


Reference


A The 57 Structurally Distinct Games