工程数学——复变函数与数学物理方法
作者: 郭玉翠
出版时间:2014年1月
出版社:清华大学出版社
- 清华大学出版社
- 9787302349341
- 1-1
- 101486
- 0045158884-2
- 平装
- 16开
- 2014年1月
- 482
- 理学
- 数学
- TB11
- 理工
- 本科
《复变函数与数学物理方法》可以作为理科非数学专业和工科各专业本科生的教材或教学参考书。本书由郭玉翠编著。
第1篇 复变函数
第1章 复变函数及其导数与积分
1.1 引言
1.2 复数与复变函数
1.2.1 复数
1.2.2 复平面
1.2.3 复数加法的几何表示
1.2.4 复平面上的点集
1.2.5 复变函数
1.3 复变函数的极限与连续
1.4 复球面与无穷远点
1.4.1 扩充复平面
1.4.2 无穷大极限
1.5 解析函数
1.5.1 复变函数的导数与微分
1.5.2 解析函数的概念及其简单性质
1.5.3 柯西一黎曼条件
1.6 复变函数的积分
1.6.1 复变函数积分的概念与计算
1.6.2 复变函数积分的简单性质
1.6.3 柯西积分定理及其推广
1.6.4 柯西积分公式及其推论
习题1
第2章 复变函数的幂级数
2.1 复数序列和复数项级数
2.1.1 复数序列及其收敛性
2.1.2 复数项级数及其收敛性
2.1.3 复数项级数的绝对收敛性
2.2 复变函数项级数和复变函数序列
2.3 幂级数
2.4 幂级数和函数的解析性
2.5 解析函数的泰勒展开式
2.6 解析函数零点的孤立性及唯一性定理
2.7 解析函数的洛朗级数展开式
2.7.1 洛朗级数
2.7.2 解析函数的洛朗展开式
2.7.3 洛朗级数与泰勒级数的关系
2.7.4 解析函数在孤立奇点邻域内的洛朗展开式
2.8 解析函数的孤立奇点及其分类
2.8.1 可去奇点
2.8.2 极点
2.8.3 本性奇点
2.8.4 复变函数的零点与极点的关系
2.8.5 复变函数在无穷远点的性态
习题2
第3章 留数及其应用
3.1 留数与留数定理
3.2 留数的计算
3.2.1 一级极点的情形
3.2.2 高级极点的情形
3.3 无穷远点处的留数
3.4 留数在定积分计算中的应用
……
第2篇 数学物理方法
第4章 数学物理方程及其定解条件
第5章 分离变量法
第6章 二阶常微分方程的级数解法 本征值问题
第7章 贝塞尔函数及其应用
第8章 勒让德多项式及其应用
第9章 行波法与积分变换法
第10章 格林函数法
附录A 正交曲线坐标系中的拉普拉斯算符
附录B Γ函数的定义和基本性质
附录C 通过计算留数求拉普拉斯变换的反演
附录D 傅里叶变换和拉普拉斯变换简表
参考文献