注册 登录 进入教材巡展
#
  • #

出版时间:2009年12月

出版社:高等教育出版社

以下为《分析Ⅰ(影印版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040279559
  • 1版
  • 91231
  • 0045150259-5
  • 异16开
  • 2009年12月
  • 430
  • 理学
  • 数学
  • O17
  • 数学类
  • 研究生、本科
内容简介
本书第一卷的内容包括集合与函数、离散变量的收敛性、连续变量的收敛性、幂函数、指数函数与三角函数;第二卷的内容包括Fourier级数和Fourier积分以及可以通过Fourier级数解释的Weierstrass的解析函数理论。
本书是作者在巴黎第七大学讲授分析课程数十年的结晶,其目的是阐明分析是什么,它是如何发展的。本书非常巧妙地将严格的数学与教学实际、历史背景结合在一起,对主要结论常常给出各种可能的探索途径,以使读者理解基本概念、方法和推演过程。作者在本书中较早地引入了一些较深的内容,如在第一卷中介绍了拓扑空间的概念,在第二卷中介绍了Lebesgue理论的基本定理和Weierstrass椭圆函数的构造。
目录
PrefaceI - Sets and Functions §1. Set Theory 1 - Membership, equality, empty set 2 - The set defined by a relation. Intersections and unions 3 - Whole numbers. Infinite sets 4 - Ordered pairs, Cartesian products, sets of subsets 5 - Functions, maps, correspondences 6 - Injections, surjections, bijections 7 - Equipotent sets. Countable sets 8 - The different types of infinity 9 - Ordinals and cardinals §2. The logic of logiciansII - Convergence: Discrete variables §1. Convergent sequences and series 0 - Introduction: what is a real number? 1 - Algebraic operations and the order relation: axioms of R 2 - Inequalities and intervals 3 - Local or asymptotic properties 4 - The concept of limit. Continuity and differentiability 5 - Convergent sequences: definition and examples 6 - The language of series 7 - The marvels of the harmonic series 8 - Algebraic operations on limits §2. Absolutely convergent series 9 - Increasing sequences. Upper bound of a set of real number 10 - The function log x. Roots of a positive number 11 - What is an integral? 12 - Series with positive terms 13 - Alternating series 14 - Classical absolutely convergent series 15 - Unconditional convergence: general case 16 - Comparison relations. Criteria of Cauchy and d'Alembert 17 - Infinite limits 18 - Unconditional convergence: associativity §3. First concepts of analytic functions 19 - The Taylor series 20 - The principle of analytic continuation 21 - The function cot x and the series ∑ 1/n2k 22 - Multiplication of series. Composition of analytic functions. Formal series 23 - The elliptic functions of WeierstrassIII- Convergence: Continuous variables §1. The intermediate value theorem 1 - Limit values of a function. Open and closed sets 2 - Continuous functions 3 - Right and left limits of a monotone function 4 - The intermediate value theorem §2. Uniform convergence 5 - Limits of continuous functions 6 - A slip up of Cauchy's 7 - The uniform metric 8 - Series of continuous functions. Normal convergence §3. Bolzano-Weierstrass and Cauchy's criterion 9 - Nested intervals, Bolzano-Weierstrass, compact sets 10 - Cauchy's general convergence criterion 11 - Cauchy's criterion for series: examples 12 - Limits of limits 13 - Passing to the limit in a series of functions §4. Differentiable functions 14 - Derivatives of a function 15 - Rules for calculating derivatives 16 - The mean value theorem 17 - Sequences and series of differentiable functions 18 - Extensions to unconditional convergence §5. Differentiable functions of several variables 19 - Partial derivatives and differentials 20 - Differentiability of functions of class C1 21 - Differentiation of composite functions 22 - Limits of differentiable functions 23 - Interchanging the order of differentiation 24 - Implicit functionsAppendix to Chapter III 1 - Cartesian spaces and general metric spaces 2 - Open and closed sets 3 - Limits and Cauchy's criterion in a metric space; complete spaces 4 - Continuous functions 5 - Absolutely convergent series in a Banach space 6 - Continuous linear maps 7 - Compact spaces 8 - Topological spacesIV - Powers, Exponentials, Logarithms, Trigonometric Functions §1. Direct construction 1 - Rational exponents 2 - Definition of real powers 3 - The calculus of real exponents 4 - Logarithms to base a. Power functions 5 - Asymptotic behaviour 6 - Characterisations of the exponential, power and logarithmic functions 7 - Derivatives of the exponential functions: direct method 8 - Derivatives of exponential functions, powers and logarithms §2. Series expansions 9 - The number e. Napierian logarithms 10 - Exponential and logarithmic series: direct method 11 - Newton's binomial series 12 - The power series for the logarithm 13 - The exponential function as a limit 14 - Imaginary exponentials and trigonometric functions 15 - Euler's relation chez Euler 16 - Hyperbolic functions §3. Infinite products 17 - Absolutely convergent infinite products 18 - The infinite product for the sine function 19 - Expansion of an infinite product in series 20 - Strange identities §4. The topology of the functions Arg(z) and Log zIndex