常用数值算法及其MATLAB实现
作者: 夏省祥、于正文
出版时间:2014年4月
出版社:清华大学出版社
- 清华大学出版社
- 9787302353348
- 1-1
- 60789
- 0045158896-6
- 平装
- 16开
- 2014年4月
- 563
- 理学
- 数学
- O245
- 应用数学、信息与计算科学
- 研究生、本科
《常用数值算法及其MATLAB实现》可作为高等院校数学与应用数学专业、信息与计算科学专业和计算机应用等专业的本科生及工科硕士研究生的教材或参考书,也可供从事科学与工程计算的技术人员参考。
第1章 引论
1.1 误差的来源
1.1.1 舍入误差
1.1.2 截断误差
1.2 误差的传播
1.2.1 尽量避免两个相近的数相减
1.2.2 防止接近零的数做除数
1.2.3 防止大数吃小数
1.2.4 简化计算步骤,减少运算次数
1.3 数值算法的稳定性
第2章 线性方程组的解法
2.1 Gauss消顺序消去法
2.2 Gauss列主元消去法
2.3 Gauss-Jordan消去法
2.4 LU分解法
2.5 平方根法
2.6 改进的平方根法
2.7 追赶法
2.8 QR分解法
2.9 方程组的性态与误差分析
2.9.1 误差分析
2.9.2 迭代改善
2.10 Jacobi迭代法
2.11 Gauss-Seidel迭代法
2.12 松弛迭代法
2.13 迭代法的收敛性分析
第3章 函数的插值
3.1 Lagrange插值
3.2 牛顿插值
3.3 Hermite插值
3.4 分段三次Hermite插值
3.5 三次样条插值函数
3.5.1 紧压样条插值函数
3.5.2 端点曲率调整样条插值函数
3.5.3 非节点样条插值函数
3.5.4 周期样条插值函数
3.5.5 MATLAB的内置三次样条插值函数简介
第4章 函数的逼近
4.1 最佳一致逼近多项式
4.2 近似最佳一致逼近多项式
4.3 最佳平方逼近多项式
4.4 用正交多项式作最佳平方逼近多项式
4.4.1 用Legendre多项式作最佳平方逼近多项式
4.4.2 用Chebyshev多项式作最佳平方逼近多项式
4.5 曲线拟合的最小二乘法
4.5.1 线性最小二乘拟合
4.5.2 用正交多项式作最小二乘拟合
4.5.3 非线性最小二乘拟合举例
4.6 Pade有理逼近
第5章 数值积分
5.1 复合求积公式
5.1.1 复合梯形公式
5.1.2 复合Simpson公式
5.1.3 复合Cotes公式
5.2 变步长的求积公式
5.2.1 变步长的梯形公式
5.2.2 变步长的Simpson公式
5.2.3 变步长的Cotes公式
5.3 Romberg积分法
5.4 自适应积分法
5.5 Gauss求积公式
5.5.1 Gauss-Legendre求积公式
5.5.2 Gauss-Chebyshev求积公式
5.5.3 Gauss-Laguerre求积公式
5.5.4 Gauss-Hermite求积公式
5.6 预先给定节点的Gauss求积公式
5.6.1 Gauss-Radau求积公式
5.6.2 Gauss-Lobatto求积公式
5.7 二重积分的数值计算
5.7.1 复合Simpson公式
5.7.2 变步长的Simpson公式
5.7.3 复合Gauss公式
5.8 三重积分的数值计算
第6章 数值优化
6.1 一元函数的极小值
6.1.1 黄金分割搜索法
6.1.2 Fibonacci搜索法
6.1.3 二次逼近法
6.1.4 三次插值法
6.1.5 牛顿法
6.2 Nelder-Mead方法
6.3 最速下降法
6.4 牛顿法
6.5 共轭梯度法
6.6 拟牛顿法
6.6.1 DFP法
6.6.2 BFGS法
6.7 模拟退火算法
6.8 遗传算法
第7章 矩阵特征值与特征向量的计算
7.1 上Hessenberg矩阵和QR分解
7.1.1 化矩阵为上Hessenberg矩阵
7.1.2 矩阵的QR分解
7.2 乘幂法与反幂法
7.2.1 乘幂法
7.2.2 反幂法
7.2.3 移位反幂法
7.3 Jacobi 方法
7.4 对称QR方法
7.5 QR方法
7.5.1 上Hessenberg的QR方法
7.5.2 原点移位的QR方法
7.5.3 双重步QR方法
第8章 非线性方程求根
8.1 迭代法
8.2 迭代法的加速收敛
8.2.1 Aitken加速法
8.2.2 Steffensen加速法
8.3 二分法
8.4 试位法
8.5 牛顿-拉夫森法
8.6 割线法
8.7 改进的牛顿法
8.8 Halley法
8.9 Brent法
8.10 抛物线法
第9章 非线性方程组的数值解法
9.1 不动点迭代法
9.2 牛顿法
9.3 修正牛顿法
9.4 拟牛顿法
9.4.1 Broyden方法
9.4.2 DFP方法
9.4.3 BFS方法
9.5 数值延拓法
9.6 参数微分法
第10章 常微分方程初值问题的数值解法
10.1 Euler方法
10.1.1 Euler方法
10.1.2 改进的Euler方法
10.2 Runge-Kutta方法
10.2.1 二阶Runge-Kutta方法
10.2.2 三阶Runge-Kutta方法
10.2.3 四阶Runge-Kutta方法
10.3 高阶Runge-Kutta方法
10.3.1 Kutta-Nystrom五阶六级方法
10.3.2 Huta六阶八级方法
10.4 Runge-Kutta-Fehlberg方法
10.5 线性多步法
10.6 预测-校正方法
10.6.1 四阶Adams预测-校正方法
10.6.2 改进的Adams四阶预测-校正方法
10.6.3 Hamming预测-校正方法
10.7 变步长的多步法
10.8 Gragg外推法
10.9 常微分方程组和高阶微分方程的数值解法
10.9.1 常微分方程组的数值解法
10.9.2 高阶微分方程的数值解法
第11章 常微分方程边值问题的数值解法
11.1 打靶法
11.1.1 线性边值问题的打靶法
11.1.2 非线性边值问题的打靶法
11.2 有限差分法
11.2.1 线性边值问题的差分方法
11.2.2 非线性边值问题的差分方法
第12章 偏微分方程的数值解法
12.1 椭圆型方程
12.2 抛物型方程
12.2.1 显式向前Euler方法
12.2.2 隐式向后Euler方法
12.2.3 Crank-Nicholson方法
12.2.4 二维抛物型方程
12.3 双曲型方程
12.3.1 一维波动方程
12.3.2 二维波动方程
程序索引
参考文献