- 中国科技出版传媒股份有限公司
- 9787030376244
- 1-1
- 96762
- 0047150429-0
- 平装
- B5
- 2013年6月
- 341
- 284
- 理学
- 数学
- O241
- 数学类
- 本专科
本书主要介绍数值计算的基本理论与方法,内容包括数值计算引论、解线性方程组的直接法、解线性方程组的迭代法、非线性方程(组)的数值解法、插值法、逼近、数值积分与数值微分、常微分方程初值问题数值算法等。对于数学系的学生,教学内容可侧重算法的理论部分;对于一般工科的学生,教学内容可侧重算法的实用性和实验性部分。
《数值计算基础》可作为应用数学、工程技术和其他相关专业本科生或研究生“数值计算”课程的教材,也可作为计算数学和工程技术人员的参考用书。
总序
前言
第1章 数值计算引论
1.1 数值计算的对象与特点
1.1.1 数值计算的目的
1.1.2 算法的优劣
1.1.3 数值计算中常用的方法
1.2 数值计算的误差
1.2.1 误差的来源及分类
1.2.2 误差与有效数字
1.2.3 数值计算的误差估计
1.3 数值计算中应注意的问题
1.4 MATLAB软件简介
1.4.1 数字及其运算
1.4.2 矩阵及其运算
1.4.3 图形功能
1.4.4 流程控制
1.4.5 M文件
习题1
第2章 解线性方程组的直接法
2.1 引言及预备知识
2.1.1 引言
2.1.2 预备知识
2.2 Gauss消去法
2.2.1 三角形方程组的算法
2.2.2 Gauss消去法
2.2.3 选主元的Gauss消去法
2.2.4 Gauss-Jordan消去法
2.3 矩阵三角分解法
2.3.1 矩阵的三角分解
2.3.2 直接三角分解法
2.3.3 平方根法
2.3.4 求解三对角方程组的追赶法
2.4 向量和矩阵的范数
2.4.1 向量范数
2.4.2 矩阵范数
2.4.3 谱半径
2.5 误差分析
2.5.1 方程组的性态
2.5.2 精度分析
2.6 数值实验
2.6.1 Gauss消去法
2.6.2 选主元Gauss消去法
2.6.3 直接三角分解法
习题2
第3章 解线性方程组的迭代法
3.1 引言
3.2 基本迭代法
3.2.1 Jacobi迭代法
3.2.2 Gauss-Seidel迭代法
3.2.3 SOR迭代法
3.3 迭代法的收敛性
3.3.1 一阶定常迭代法的基本定理
3.3.2 迭代收敛性的判断
3.3.3 特殊线性方程组迭代收敛性的进一步讨论
3.4 数值实验
3. 4.1.Jacobi迭代法
3.4.2 Gauss-Seidel迭代法
3.4.3 SOR迭代法
习题3
第4章 非线性方程(组)的数值解法
4.1 引言
4.2 非线性方程的二分法
4.3 简单迭代法
4.3.1 简单迭代方法
4.3.2 收敛定理
4.3.3 迭代的几何意义
4.4 迭代加速方法
4.4.1 Aitken加速
4.4.2 Steffensen加速
4.5 Newton迭代法
4.5.1 Newton迭代原理
4.5.2 Newton迭代收敛定理
4.5.3 改进与推广
4.6 解非线性方程组F(x)=0的Newton法
4.6.1 问题的提法及基本概念
4.6.2 收敛定理
4.7 数值实验
4.7.1 二分法
4.7.2 简单迭代法
4.7.3 Newton迭代和割线法
习题4
第5章 插值法
5.1 引言
5.1.1 插值问题的提法
5.1.2 插值多项式的存在性、唯一性
5.2 Lagrange插值多项式
5.2.1 插值基函数
5.2.2 Lagrange插值多项式
5.2.3 插值余项
5.3 差商与Newton插值
5.3.1 差商及性质
5.3.2 Newton插值多项式
5.4 差分、等距节 点Newton插值多项式
5.4.1 差分及其性质
5.4.2 等距节 点Newton插值多项式
5.5 Hermite插值
5.5.1 Hermite插值问题
5.5.2 特殊的Hermite插值多项式的构造
5.6 分段低次插值法
5.6.1 高次插值的Runge现象
5.6.2 分段线性插值
5.6.3 分段三次Hermite插值
5.7 三次样条插值
5.8 数值实验
5.8.1 Lagrange插值
5.8.2 Newton插值与差商表
5.8.3 Hermite插值
5.8.4 分段线性插值和三次样条插值
习题5
第6章 逼近
6.1 引言
6.2 正交多项式
6.2.1 连续函数空间
6.2.2 正交多项式的理论
6.2.3 常用正交多项式
6.3 函数的最佳平方逼近
6.3.1 最佳平方逼近函数的概念
6.3.2 用多项式作最佳平方逼近
6.3.3 用正交多项式作最佳平方逼近
6.4 最小二乘逼近
6.4.1 一般的最小二乘逼近
6.4.2 最小二乘逼近多项式
6.5 可化为线性模型的曲线拟合
6.6 数值实验
习题6
第7章 数值积分与数值微分
7.1 数值积分的基本思想
7.2 插值型积分公式
7.3 Newton-Cotes公式
7.3.1 Newton-Cotes公式的推导
7.3.2 Newton-Cotes公式的余项估计
7.3.3 Newton-Cotes公式的数值稳定性
7.4 复化求积公式
7.4.1 复化梯形公式
7.4.2 复化Simpson公式
7.5 Romberg算法
7.5.1 区间逐次分半法
7.5.2 Rombeig算法
7.6 Gauss型求积公式
7.6.1 Gauss型求积思想
7.6.2 Gauss型求积的误差估计和稳定性分析
7.6.3 几种常见的Gauss型求积公式
7.7 数值微分
7.7.1 差商型数值微分
7.7.2 插值型数值微分
7.7.3 样条函数微分公式
7.8 数值实验
7.8.1 MATLAB自带积分函数
7.8.2 复化求积公式
7.8.3 Romberg积分
7.8.4 Gauss型积分
7.8.5 数值微分
习题7
第8章 常微分方程初值问题数值算法
8.1 引言
8.2 Euler方法
8.2.1 Euler方法
8.2.2 改进的Euler公式
8.3 Runge-Kutta方法
8.3.1 Runge-Kutta方法的构造原理
8.3.2 常用公式
8.3.3 步长的自动选择
8.4 单步法的收敛性与稳定性
8.4.1 单步法的收敛性
8.4.2 单步法的稳定性
8.5 线性多步法
8.5.1 Adams方法
8.5.2 待定系数法
8.5.3 多步法的计算
8.6 边值问题的数值解法
8.6.1 有限差分解法
8.6.2 打靶法
8.7 数值实验
8.7.1 Euler方法
8.7.2 R-K方法
8.7.3 MATLAB自带的求解常微分方程函数
习题8
参考文献
部分习题答案