注册 登录 进入教材巡展
#

出版时间:2014年3月

出版社:世界图书出版公司

以下为《物理学家用的数学方法 第7版》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 世界图书出版公司
  • 9787510070754
  • 56098
  • 2014年3月
  • 未分类
  • 未分类
  • O411
内容简介
  阿夫肯著的《物理学家用的数学方法(第7版)(精)》是为具有研究生水平的读者编写的一部入门性工具书,语言简练,结构流畅,可读性很强,很受读者欢迎,本书是第7版。本版全面介绍了物理学中常用数学方法,内容涉及物理学中用到的数学内容,包括矢量/张量分析,矩阵,群论,数列与复变函数,各种特殊函数,微分方程,傅里叶分析与积分变换,非线性方法,变分法和概率论等诸多领域,是从事物理学研究和教学人员的案头必备书。 读者对象:物理、数学及相关专业的研究生和科教工作者。
目录

Preface


1 Mathematical Preliminaries


 1.1 InfiniteSeries


 1.2 Series ofFunctions


 1.3 Binomial Theorem


 1.4 Mathematical Induction


 1.5 Operations on Series Expansions of Functions


 1.6 Some Important Series


 1.7 Vectors


 1.8 Complex Numbers and Functions


 1.9 Derivatives andExtrema


 1.10 Evaluation oflntegrals


 1.1 I Dirac Delta Function


 AdditionaIReadings


2 Determinants and Matrices


 2.1 Determinants


 2.2 Matrices


 AdditionaI Readings


3 Vector Analysis


 3.1 Review ofBasic Properties


 3.2 Vectors in 3-D Space


 3.3 Coordinate Transformations


 3.4 Rotations in IR3


 3.5 Differential Vector Operators


 3.6 Differential Vector Operators: Further Properties


 3.7 Vectorlntegration


 3.8 Integral Theorems


 3.9 PotentiaITheory


 3.10 Curvilinear Coordinates


 AdditionaIReadings


4 Tensors and Differential Forms


 4.1 TensorAnalysis


 4.2 Pseudotensors, Dual Tensors


 4.3 Tensors in General Coordinates


 4.4 Jacobians


 4.5 DifferentialForms


 4.6 DifferentiatingForms


 4.7 IntegratingForms


 AdditionalReadings


5 Vector Spaces


 5.1 Vectors in Function Spaces


 5.2 Gram-Schmidt Orthogonalization


 5.3 Operators


 5.4 SelfAdjointOperators


 5.5 Unitaty Operators


 5.6 Transformations of Operators


 5.7 Invariants


 5.8 Summary-Vector Space Notation


 AdditionaIReadings


6 Eigenvalue Problems


 6.1 EigenvalueEquations


 6.2 Matrix Eigenvalue Problems


 6.3 Hermitian Eigenvalue Problems


 6.4 Hermitian Matrix Diagonalization


 6.5 NormaIMatrices


 AdditionalReadings


7 Ordinary DifTerential Equations


 7.1 Introduction


 7.2 First-OrderEquations


 7.3 ODEs with Constant Coefficients


 7.4 Second-Order Linear ODEs


 7.5 Series Solutions-Frobenius ' Method


 7.6 OtherSolutions


 7.7 Inhomogeneous Linear ODEs


 7.8 Nonlinear Differential Equations


 Additional Readings


8 Sturm-Liouville Theory


 8.1 Introduction


 8.2 Hermitian Operators


 8.3 ODE Eigenvalue Problems


 8.4 Variation Method


 8.5 Summary, Eigenvalue Problems


 Additional Readings


9 Partial Differential Equations


 9.1 Introduction


 9.2 First-Order Equations


 9.3 Second-Order Equations


 9.4 Separation of Variables


 9.5 Laplace and Poisson Equations


 9.6 Wave Equation


 9.7 Heat-Flow, or Diffusion PDE


 9.8 Summary


 Additional Readings


10 Green's Functions


 10.1 One-Dimensional Problems


 10.2 Problems in Two and Three Dimensions


 Additional Readings


11 Complex Variable Theory


 11.1 Complex Variables and Functions


 11.2 Cauchy-Riemann Conditions


 11.3 Cauchy' s Integral Theorem


 11.4 Cauchy' s Integral Formula


 11.5 Laurent Expansion


 11.6 Singularities


 11.7 Calculus of Residues


 11.8 Evaluation of Definite Integrals


 11.9 Evaluation of Sums


 11.10 Miscellaneous Topics


 Additional Readings


12 Further Topics in Analysis


 12.1 Orthogonal Polynomials


 12.2 Bernoulli Numbers


 12.3 Euler-Maclaurin Integration Formula


 12.4 Dirichlet Series


 12.5 Infinite Products


 12.6 Asymptotic Series


 12.7 Method of Steepest Descents


 12.8 Dispersion Relations


 Additional Readings


13 Gamma Function


 13.1 Definitions, Properties


 13.2 Digamma and Polygamma Functions


 13.3 The Beta Function


 13.4 Stirling's Series


 13.5 Riemann Zeta Function


 13.6 Other Related Functions


 Additional Readings


14 Bessel Functions


 14.1 Bessel Functions of the First Kind, ,Iv (x)


 14.2 Orthogonality


 14.3 Neumann Functions, Bessel Functions of the Second Kind


 14.4 Hankel Functions


 14.5 Modified Bessel Functions, Iv (x) and Kv (x)


 14.6 Asymptotic Expansions


 14.7 Spherical Bessel Functions


 Additional Readings


15 Legendre Functions


 15.1 Legendre Polynomials


 15.2 Orthogonality


 15.3 Physical Interpretation of Generating Function


 15.4 Associated L