注册 登录 进入教材巡展
#
  • #

出版时间:2016年3月

出版社:高等教育出版社

以下为《高等数学引论(2)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040330533
  • 1版
  • 193706
  • 0045175808-0
  • 16开
  • 2016年3月
  • 850
  • 595
  • 理学
  • 数学
  • O13
  • 数学类
  • 研究生、本科
内容简介
华罗庚著的《高等数学引论》是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授。全书包含了微积分、高等代数、常微分方程、复变函数论等内容。全书反映了作者的“数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲”的教学思想,还包括了作者的“要埋有伏笔”、“生书熟讲,熟书生温”等教学技巧,书中还介绍了数学理论的不少应用。
目录

Preface


Translator's note


Introduction


1  The geometry of the complex plane


  1.1  The complex plane


  1.2  The geometry of the complex plane


  1.3  The bilinear transformation (M6bius transformation)


  1.4  Groups and subgroups


  1.5  The Riemann sphere


  1.6  The cross-ratio


  1.7  Corresponding circles


  1.8  Pencils of circles


  1.9  Bundles of circles


  1.10  Hermitian matrices


  1.11  Types of transformations


  1.12  The general linear group


  1.13  The fundamental theorem of projective geometry


2  Non-Euclidean geometry


  2.1  Euclidean geometry (parabolic geometry)


  2.2  Spherical geometry (elliptic geometry)


  2.3  Some properties of elliptic geometry


  2.4  Hyperbolic geometry (Lobachevskian geometry)


  2.5  Distance


  2.6  Triangles


  2.7  Axiom of parallels


  2.8  Types of non-Euclidean motions


3  Definitions and examples of analytic and harmonic functions


  3.1  Complex functions


  3.2  Conformal transformations


  3.3  Cauchy-Riemann equations


  3.4  Analytic functions


  3.5  The power function


  3.6  The Joukowsky transform


  3.7  The logarithm function


  3.8  The trigonometric functions


  3.9  The general power function


  3.10  The fundamental theorem of conformal transformation


4  Harmonic functions


  4.1  A mean-value theorem


  4.2  Poisson's integral formula


  4.3  Singular integrals


  4.4  Dirichlet problem


  4.5  Dirichlet problem on the upper half-plane


  4.6  Expansions of harmonic functions


  4.7  Neumann problem


  4.8  Maximum and minimum value theorems


  4.9  Sequences of harmonic functions


  4.10  Schwarz's lemma


  4.11  Liouville's theorem


  4.12  Uniqueness of conformal transformations


  4.13  Endomorphisms


  4.14  Dirichlet problem in a simply connected region


  4.15  Cauchy's integral formula in a simply connected region


5  Point set theory and preparations for topology


  5.1  Convergence


  5.2  Compact sets


  5.3  The Cantor-Hilbert diagonal method


  5.4  Types of point sets


  5.5  Mappings or transformations


  5.6  Uniform continuity


  5.7  Topological mappings


  5.8  Curves


  5.9  Connectedness


  5.10  Special examples of Jordan's theorem


  5.11  The connectivity index


6  Analytic functions


  6.1  Definition of an analytic function


  6.2  Certain geometric concepts


……