泛函分析(影印版) / 天元基金影印数学丛书
作者: Peter D.Lax
出版时间:2007年1月
出版社:高等教育出版社
- 高等教育出版社
- 9787040216493
- 1版
- 190613
- 0045150266-0
- 异16开
- 2007年1月
- 600
- 580
- 理学
- 数学
- O177
- 数学类
- 研究生、本科
Foreword
1.Linear Spaces
2.Linear Maps
3.The Hahn-Banach Theorem
4.Applications of the Hahn-Banach theorem
5.Normed Linear Spaces
6.Hilbert Space
7.Applications of Hilbert Space Results
8.Duals of Normed Linear Speaces
9.Applications of Duality
10.Weak Convergence
11.Applications of Weak Convergence
12.The Weak and Weak Topologies
13.Locally Convex Topologies and the Krein-Milman Theorem
14.Examples of Convex Sets and Their Extreme Points
15.Bounded Linear Maps
16.Examples of Bounded Linear Maps
17.Banach Algebras and their Elementary Spectral Theory
18.Gelfand's Theory of Commutative Banach Algebras
19.Applications of Gelfand's Theory of Commutative Banach Algebras
20.Examples of Operators and Their Spectra
21.Compact Maps
22.Examples of Compact Operators
23.Positive compact operators
24.Fredholm's Theory of Integral Equations
25.Invariant Subspaces
26.Harmonic Analysis on a Halfline
27.Index Theory
28.Compact Symmetric Operators in Hilbert Space
29.Examples of Compact Sysmmetric Operators
30.Trace Class and Trace Formula
31.Spectral Theory of Symmetric,Normal,and Unitary Operators
32.Spectral Theory of Self-Adjoint Operators
33.Examples of Self-Adjoint Operators
34.Semigroups of Operators
35.Groups of Unitary Operators
36.Examples of Strongly Continuous Semigroups
37.Scattering Theory
38.A Theorem of Beurling
A.Riesz-Kakutani representation theorem
B.Theory of distrbutions
C.Zorn's Lemma
Author Index
Subject Index