注册 登录 进入教材巡展
#
  • #

出版时间:2016年5月

出版社:哈尔滨工业大学出版社

以下为《微积分(第2卷)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 哈尔滨工业大学出版社
  • 9787560358963
  • 1-1
  • 187846
  • 0047176898-6
  • 2016年5月
  • 理学
  • 数学
  • O172
  • 数学
  • 研究生、本科
内容简介
张宇、黄艳主编的《微积分(第2卷英文版高等学校教材)》为《微积分》一书的第二卷,适用于工科院校非数学专业本科新生,亦可作为工程技术人员的参考书籍。本卷包含四个章节,内容涵盖多元函数微分学,多元函数积分学,第二型曲线积分、第二型曲面积分及无穷级数。本书包含大量例题及习题。
目录

Chapter 8 Differential Calculus of Multivariable Functions


  8.1 Limits and Continuity of Multivariable Functions


  8.2 Partial Derivatives and Higher—Order Partial Derivatives


  8.3 Linear Approximations and Total Differentials


  8.4 The Chain Rule


  8.5 Implicit Differentiation


  8.6 Applications of Partial Derivatives to Analytic Geometry


  8.7 Extreme Values of Functions of Several Variables


  8.8 Directional Derivatives and The Gradient Vector


  8.9 Examples


  Exercises 8


Chapter 9 Multiple Integrals


  9.1 Double Integrals


  9.2 Calculating Double Integrals


  9.3 Calculating Triple Integrals


  9.4 Concepts and Calculations of The First Type Curve Integral


  9.5 The First Type Surface Integral


  9.6 Application of Integrals


  9.7 Examples


  Exercises 9


Chapter 10 The Second Type Curve Integral, Surface Integral,and Vector Field


  10.1 The Second Type Curve Integral


  10.2 The Green's Theorem


  10.3 Conditions for Plane Curve Integrals Being Independent of Path, Conservative Fields


  10.4 The Second Type Surface Integral


  10.5 The Gauss Formula, The Flux and Divergence


  10.6 The Stokes' Theorem, Circulation and Curl


  10.7 Examples


  Exercises 10


Chapter 11 Infinite Series


  11.1 Convergence and Divergence of Infinite Series


  11.2 The Discriminances for Convergence and Divergence of Infmite Series with Positive Terms


  11.3 Series With Arbitrary Terms, Absolute Convergence


  11.4 The Discrinunances for Convergence of Improper Integral, г Function


  11.5 Series with Function Terms, Uniform Convergence


  11.6 Power Series


  11.7 Expanding Functions as Power Series


  11.8 Some Applications of The Power Series


  11.9 Fourier Series


  11.10 Examples


  Exercises 11


Appendix Ⅳ Change of Variables in Multiple Integrals


Appendix Ⅴ Radius of Convergence of Power Series