注册 登录 进入教材巡展
#
  • #

出版时间:2013年4月

出版社:电子工业出版社

以下为《数字图像处理(MATLAB版)(第二版)(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 电子工业出版社
  • 9787121195440
  • 1-1
  • 153223
  • 0047151437-2
  • 平装
  • 16开
  • 2013年4月
  • 1203
  • 756
  • 工学
  • 信息与通信工程
  • TN911.73
  • 信号与信息处理
  • 研究生、本科
内容简介
冈萨雷斯、伍兹、埃丁斯所著的《数字图像处理(MATLAB版第2版英文版)》是图像处理基础理论论述与以MATLAB为主要工具的软件实践方法相结合的第一本书。它集成了冈萨雷斯和伍兹所著的《数字图像处理(第三版)》一书中的重要内容和MathWorks公司的图像处理工具箱。本书的特色在于重点强调了怎样通过开发新代码来增强这些软件工具。本书在介绍MATLAB编程基础知识之后。讲述了图像处理的主要内容,具体包括灰度变换、线性和非线性空间滤波、频域滤波、图像复原与重建、几何变换和图像配准、彩色图像处理、小波、图像压缩、形态学图像处理、图像分割、区域和边界表示与描述等。
《数字图像处理(MATLAB版第2版英文版)》可供从事信号与信息处理、计算机科学与技术、通信工程、地球物理等专业的大专院校师生学习参考。
目录

Preface


Acknowledgements


About the Authors


1 Introduction


  Preview


  1.1 Background


  1.2 What Is Digital Image Processing?


  1.3 Background on MATLAB and the Image Processing Toolbox


  1.4 Areas of Image Processing Covered in the Book


  1.5 The Book Web Site


  1.6 Notation


  1.7 Fundamentals


    1.7.1 The MATLAB Desktop


    1.7.2 Using the MATLAB Editor/Debugger


    1.7.3 Getting Help


    1.7.4 Saving and Retrieving Work Session Data


    1.7.5 Digital Image Representation


    1.7.6 Image I/O and Display


    1.7.7 Classes and Image Types


    1.7.8 M-Function Programming


  1.8 How References Are Organized in the Book


  Summary


2 Intensity Transformations and Spatial Filtering


  Preview


  2.1 Background


  2.2 Intensity Transformation Functions


    2.2.1 Functions imadjust and stretchlim


    2.2.2 Logarithmic and Contrast- Stretching Transformations


    2.2.3 Specifying Arbitrary Intensity Transformations


    2.2.4 Some Utility M-functions for Intensity Transformations


  2.3 Histogram Processing and Function Plotting


    2.3.1 Generating and Plotting Image Histograms


    2.3.2 Histogram Equalization


    2.3.3 Histogram Matching (Specification)


    2.3.4 Function adapthisteq


  2.4 Spatial Filtering


    2.4.1 Linear Spatial Filtering


    2.4.2 Nonlinear Spatial Filtering


  2.5 Image Processing Toolbox Standard Spatial Filters


    2.5.1 Linear Spatial Filters


    2.5.2 Nonlinear Spatial Filters


  2.6 Using Fuzzy Techniques for Intensity Transformations and Spatial Filtering


    2.6.1 Background


    2.6.2 Introduction to Fuzzy Sets


    2.6.3 Using Fuzzy Sets


    2.6.4 A Set of Custom Fuzzy M-functions


    2.6.5 Using Fuzzy Sets for Intensity Transformations


    2.6.6 Using Fuzzy Sets for Spatial Filtering


  Summary


3 Filtering in the Frequency Domain


  Preview


  3.1 The 2-D Discrete Fourier Transform


  3.2 Computing and Visualizing the 2-D DFT in MATLAB


  3.3 Filtering in the Frequency Domain


    3.3.1 Fundamentals


    3.3.2 Basic Steps in DFT Filtering


    3.3.3 An M-function for Filtering in the Frequency Domain


  3.4 Obtaining Frequency Domain Filters from Spatial Filters


  3.5 Generating Filters Directly in the Frequency Domain


    3.5.1 Creating Meshgrid Arrays for Use in Implementing Filters in the Frequency Domain


    3.5.2 Lowpass (Smoothing) Frequency Domain Filters


    3.5.3 Wireframe and Surface Plotting


  3.6 Highpass (Sharpening) Frequency Domain Filters


    3.6.1 A Function for Highpass Filtering


    3.6.2 High-Frequency Emphasis Filtering


  3.7 Selective Filtering


    3.7.1 Bandreject and Bandpass Filters


    3.7.2 Notchreject and Notchpass Filters


  Summary


4 Image Restoration and Reconstruction


  Preview


  4.1 A Model of the Image Degradation/Restoration Process


  4.2 Noise Models


    4.2.1 Adding Noise to Images with Function imnoise


    4.2.2 Generating Spatial Random Noise with a Specified Distribution


    4.2.3 Periodic Noise


    4.2.4 Estimating Noise Parameters


  4.3 Restoration in the Presence of Noise Only—Spatial Filtering


    4.3.1 Spatial Noise Filters


    4.3.2 Adaptive Spatial Filters


  4.4 Periodic Noise Reduction Using Frequency Domain Filtering


  4.5 Modeling the Degradation Function


  4.6 Direct Inverse Filtering


  4.7 Wiener Filtering


  4.8 Constrained Least Squares (Regularized) Filtering


  4.9 Iterative Nonlinear Restoration Using the Lucy-Richardson Algorithm


  4.10 Blind Deconvolution


  4.11 Image Reconstruction from Projections


    4.11.1 Background


    4.11.2 Parallel-Beam Projections and the Radon Transform


    4.11.3 The Fourier Slice Theorem and Filtered Backprojections


    4.11.4 Filter Implementation


    4.11.5 Reconstruction Using Fan-Beam Filtered Backprojections


    4.11.6 Function radon


    4.11.7 Function iradon


    4.11.8 Working with Fan-Beam Data


  Summary


5 Geometric Transformations and Image Registration


  Preview


  5.1 Transforming Points


  5.2 Affine Transformations


  5.3 Proj