非线性双曲型偏微分方程
¥36.00定价
作者: 王玉柱、刘法贵
出版时间:2017年1月
出版社:清华大学出版社
- 清华大学出版社
- 9787302453765
- 1-1
- 112620
- 16开
- 2017年1月
- 理学
- 数学
- O175
- 数学
- 本专科、高职高专
内容简介
目录
Preface
...................................................................................................I
Chapter 1 Introduction.....................................................................
1
1.1 Intention
and Signi.cances ....................................................... 1
1.2 Basic
Concepts ........................................................................
7
1.3 Some
Examples.......................................................................14
1.4 Preliminaries
..........................................................................18
Chapter 2 Cauchy
Problem for Nonlinear Hyperbolic Systems in Diagonal Form
...........................................................25
2.1 The
Single Nonlinear Hyperbolic Equation ...............................25
2.2 The
Classical Solutions to Single Nonlinear Hyperbolic Equation ................................................................................32
2.3 Nonlinear
Hyperbolic Equations in Diagonal Form....................40
Chapter 3 Singularities
Caused by the Eigenvectors ....................50
3.1 Introduction
...........................................................................50
3.2 Completely
Reducible Systems.................................................55
3.3 2-Step
Completely Reducible Systems ......................................59
3.4 m(m>
2)-Step Completely Reducible Systems with Constant Eigenvalues
..............................................................67
3.5 Non-completely
Reducible Systems ..........................................74
3.6 Examples
...............................................................................76
Chapter 4 Hyperbolic
Geometric Flow on Riemannian
Surfaces...........................................................................85
4.1 Introduction
...........................................................................85
4.2 Cauchy
Problem for Hyperbolic Geometric Flow.......................87
4.3 Mixed
Initial Boundary Value Problem for Hyperbolic Geometric Flow
......................................................................99
4.4 Dissipative
Hyperbolic Geometric Flow .................................. 107
4.5 Explicit
Solutions..................................................................119
4.6 Radial
Solutions to Hyperbolic Geometric Flow ...................... 124
Chapter 5 Life-Span
of Classical Solutions to Hyperbolic Geometric Flow in Two Space Variables with
Slow Decay Initial Data .............................................. 127
5.1 Intention
and Signi.cances .................................................... 127
5.2 Some
Useful Lemmas ............................................................ 130
5.3 Lower
Bound of Life-Span ..................................................... 143
Chapter 6 Nonlinear
Hyperbolic Systems with Relaxation ...... 153
6.1 Introduction
......................................................................... 153
6.2 Global
Classical Solutions...................................................... 155
6.3 Applications
.........................................................................162
6.4 Convergence
of Approximate Solutions...................................165
Chapter 7 Applications..................................................................
175
7.1 One Dimensional Hydromagnetic
Dynamics............................175
7.2 Fluid Flow on a Pipe
............................................................ 187
7.3 Heat Conduction with Finite of
Propagation .......................... 189
7.4 A Nonlinear Systems in
Viscoelasticity...................................191
Bibliography
......................................................................................
202
Index
..................................................................................................
209
...................................................................................................I
Chapter 1 Introduction.....................................................................
1
1.1 Intention
and Signi.cances ....................................................... 1
1.2 Basic
Concepts ........................................................................
7
1.3 Some
Examples.......................................................................14
1.4 Preliminaries
..........................................................................18
Chapter 2 Cauchy
Problem for Nonlinear Hyperbolic Systems in Diagonal Form
...........................................................25
2.1 The
Single Nonlinear Hyperbolic Equation ...............................25
2.2 The
Classical Solutions to Single Nonlinear Hyperbolic Equation ................................................................................32
2.3 Nonlinear
Hyperbolic Equations in Diagonal Form....................40
Chapter 3 Singularities
Caused by the Eigenvectors ....................50
3.1 Introduction
...........................................................................50
3.2 Completely
Reducible Systems.................................................55
3.3 2-Step
Completely Reducible Systems ......................................59
3.4 m(m>
2)-Step Completely Reducible Systems with Constant Eigenvalues
..............................................................67
3.5 Non-completely
Reducible Systems ..........................................74
3.6 Examples
...............................................................................76
Chapter 4 Hyperbolic
Geometric Flow on Riemannian
Surfaces...........................................................................85
4.1 Introduction
...........................................................................85
4.2 Cauchy
Problem for Hyperbolic Geometric Flow.......................87
4.3 Mixed
Initial Boundary Value Problem for Hyperbolic Geometric Flow
......................................................................99
4.4 Dissipative
Hyperbolic Geometric Flow .................................. 107
4.5 Explicit
Solutions..................................................................119
4.6 Radial
Solutions to Hyperbolic Geometric Flow ...................... 124
Chapter 5 Life-Span
of Classical Solutions to Hyperbolic Geometric Flow in Two Space Variables with
Slow Decay Initial Data .............................................. 127
5.1 Intention
and Signi.cances .................................................... 127
5.2 Some
Useful Lemmas ............................................................ 130
5.3 Lower
Bound of Life-Span ..................................................... 143
Chapter 6 Nonlinear
Hyperbolic Systems with Relaxation ...... 153
6.1 Introduction
......................................................................... 153
6.2 Global
Classical Solutions...................................................... 155
6.3 Applications
.........................................................................162
6.4 Convergence
of Approximate Solutions...................................165
Chapter 7 Applications..................................................................
175
7.1 One Dimensional Hydromagnetic
Dynamics............................175
7.2 Fluid Flow on a Pipe
............................................................ 187
7.3 Heat Conduction with Finite of
Propagation .......................... 189
7.4 A Nonlinear Systems in
Viscoelasticity...................................191
Bibliography
......................................................................................
202
Index
..................................................................................................
209