语言表达与运用 / 中等职业教育语文类教学改革规划教材
¥18.00定价
作者: 王慧萍
出版时间:2015年7月
出版社:机械工业出版社
- 机械工业出版社
- 9787111220718
- 1-4
- 99914
- 61184463-0
- 平装
- B5
- 2015年7月
- 432
- 艺术学
- 美术学
- H0
- 公共素质课
- 中职
内容简介
本书从中等职业学生的实际水平出发,为满足学生就业和发展的需要,以说、写为主,以听、读为辅;强化实训,兼顾基础。本书共有10个单元,分别是朗读、介绍、复述、解说、评述、演说、辩论、面试、主持和采访。每个单元包括单元达标标准、单元知识、课文及其实践与思考。单元达标标准分为初级、中级、高级三个标准,是本单元学习的目标。单元知识是本单元学习的主要内容,侧重于方法的介绍。课文由若干篇幅适中、针对性强和时代感强的例文组成,便于学生模仿训练。实践与思考包括对课文内容的理解、语文基础训练和口语训练。此外,本书还有:汉语拼音方案、朗读符号表、赛场辩论的四种模式及班级辩论会的组织、面试中的礼仪及着装要求等四个附录,主要为补充基础知识和便于组织学生活动之用。
本书既可作为中等职业学校学生的语文教材,亦可作为中学生或社会人员的参考读物。
本书既可作为中等职业学校学生的语文教材,亦可作为中学生或社会人员的参考读物。
目录
CHAPTER Ⅰ. ANALYTIC FUNCTIONS OF ONE COMPLEX VARIABLE Summary 1.2. Preliminaries 1.2. Cauchy's integral formula and its applications 1.3. The Runge approximation theorem 1.4. The Mittag-Leffler theorem 1.5. The Weierstrass theorem 1.6. Subharmonic functions NotesCHAPTER Ⅱ. ELEMENTARY PROPERTIES OF FUNCTIONS OF SEVERAL COMPLEX VARIABLES Summary 2.1. Preliminaries 2.2. Applications of Cauchy's integral formula in polydiscs 2.3. The inhomogeneous Cauchy-Riemann equations in a polydisc 2.4. Power series and Reinhardt domains 2.5. Domains of holomorphy 2.6. Pseudoconvexity and plurisubharmonicity 2.7. Runge domains NotesCHAPTER Ⅲ. APPLICATIONS TO COMMUTATIVE BANACH ALGEBRAS Summary 3.1. Preliminaries 3.2. Analytic functions of elements in a Banach algebra NotesCHAPTER Ⅳ. L2 ESTIMATES AND EXISTENCE THEOREMS FOR THE e OPERATOR Summary 4.1. Preliminaries 4.2. Existence theorems in pseudoconvex domains 4.3. Approximation theorems 4.4. Existence theorems in L2 spaces 4.5. Analytic functionals NotesCHAPTER Ⅴ. STEIN MANIFOLDS Summary 5.1. Definitions 5.2. L2 estimates and existence theorems for the e operator 5.3. Embedding of Stein manifolds. 5.4. Envelopes of holomorphy. 5.5. The Cousin problems on a Stein manifold 5.6. Existence and approximation theorems for sections of an analytic vector bundle 5.7. Almost complex manifolds NotesCHAPTER Ⅵ. LOCAL PROPERTIES OF ANALYTIC FUNCTIONS Summary 6.1. The Weierstrass preparation theorem 6.2. Factorization in the ring ,4o of germs of analytic functions 6.3. Finitely generated ,4o-modules 6.4. The Oka theorem 6.5. Analytic sets NotesCHAPTER Ⅶ. COHERENT ANALYTIC SHEAVES ON STEIN MANIFOLDS Summary 7.1. Definition of sheaves 7.2. Existence of global sections of a coherent analytic sheaf 7.3. Cohomology groups with values in a sheaf 7.4. The cohomology groups of a Stein manifold with coefficients in a coherent analytic sheaf 7.5. The de Rham theorem 7.6. Cohomology with bounds and constant coefficient difterential equations 7.7. Quotients of AK by submodules, and the Ehrenpreis fundamental principle NotesBIBLIOGRAPHYINDEX