注册 登录 进入教材巡展
#
  • #

出版时间:2005年3月

出版社:高等教育出版社

以下为《离散数学及其应用(第3版)(影印版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040162301
  • 3版
  • 85473
  • 0045151087-9
  • 异16开
  • 2005年3月
  • 650
  • 775
  • 理学
  • 数学
  • O158
  • 工学、理学
  • 本科
内容简介
本书从Thomson Learning出版公司引进。本书内容包括:复合陈述中的逻辑,定量陈述中的逻辑,基础数论及证明方法,数理推断及序列,集合论,计算和概率,函数,递归,运算法则及效率,关系,图和树,常规表达式和自动控制。
本书可作为高等院校理工科专业学生作为离散数学双语教材使用,与其同类教材相比;本书有以下几个突出的特点:1.着重逻辑推理;2.以螺旋前进的方式介绍并运用概念,便于学生了解及进一步掌握;3.大量的图表便于学生直观理解;4.习题配置合理,书后给出了习题答案.5.有与本书配套的网络资源。
本书叙述详尽、语言表达流畅,适合于理工科各专业学生作为双语教材使用,也可供教师教学参考。
目录

Chapter 1 The Logic of Compound Statements    1


    1.1 LogicalForm and LogicalEquivalence   1


      


Statements;CompoundStatements;TruthValues;EvaluatingtheTruthofMo


re General Compound Statements;Logical Equivalence;Tautologies


and Contradictions;Summary ofLogical Equivalences


    1.2 Conditional Statements    17


        Logical Equivalences Involving→:Representation ofIf-Then


As Or;The Negadon of a Conditional Statement;The Contrapositive


of a Conditional Statement;The Converse and Inverse of a


Conditional Statement;Only If and the Biconditional;Necessary and


Sufficient Conditions;Remarks


    l.  3 Valid andInvalid Arguments    29


        Modus Ponens and Modus Tollens;Additional Valid Argument


Forms:Rules of


        Inference;Fallacies;Contradictions and Valid


Arguments;Summary of Rules of


        Inference


    1.4Application:Digital Logic Circuits 43


        Black Boxesand Gates;The Input/Output for a Circuit;The


Boolean Expression Cor-


        responding to a Circuit;The Circuit Corresponding to a


Boolean Expression;Finding


        a CircuitThatCorresponds to a


GivenInput/OutputTable;Simplifying Combinational


        Circuits;NAND and NOR Gares


    1.5 Application:Number Systems and Circuits for Addition    


57


        Binary Representation of Numbers;Binary Addition and


Subtraction;Circuits for


Computer Addition;Two"s Complements and the Computer


Representation of Neg-


        ativeIntegers;8-Bit Representation of a


Number;ComputerAddition with Negative


        Integers;Hexadecimal Notation


Chapter 2 The Logic of Quantified Statements    75


    2.1 Introduction to Predicates and Quantified Statements /    


75


        The Universal Quantifier:V:The Existential Quantifier:ョ


:Formal Versus Informal


        Language;Universal Conditional Statements;Equivalent


Forms ofthe Universal and


        Existential Statements;Implicit Quantification;Tarski"s


World


    2.2 Introduction to Predicates and Quantified Statements II 88


        Negations of Quantified Statements;Negations of Universal


Conditional Statements;The Relation among V,ョ,∧,and V;Vacuous


Truth of Universal Statements;Variants


        0f Universal Conditional Statements;Necessal-y and


Sufficient Conditions,Only If


2.3 Statements Containing Multiple Quantifiers    97


        Translating from Informal to Formal Language;Ambiguous


Language;Negations of Multiply.Quantified Statements;Older of


Quantifiers;Formal Logical Notation;Prolog


    2. 4 Arguments with Quantified Statements    111


       Universal MOdus Ponens;Use of Universal Modus Ponens in a


Proof;Universal Modus Tollens;proving Validity of Arguments with


Quantified Statements;Using Diagramsto


Test for Validity;Creating Additional Forms of Argument;Remark on


the Converse and Inverse Errors


Chapter 3 Elementary Number Theoryand Methods ofProof    125


     3.1 Direct Proofand Counterexample h Introduction    126


        Definitions;Provlag Existential Statements;Disproving


Universal Statements by


        Counterexample;Proving Universal Statements;Directions


for Writing Proofs of


        Universal Statements;Common Mistakes;Getting Proofs


Started;Showing That an


        Existential Statement Is False;Conjecture,Proof,and


Disproof


   3.2 Direct Proofand Counterexample II Rational Numbers    141


        More on Generalizing from the Generic Particular;Proving


Properties of Rational


        Numbers;Deriving New Mathematics from Old


    3.3 Direct Proof and Counterexample IIh Divisibility    148


        Pmving Properties of Divisibility;Counterexamples and


Divisibility;The Unique


        Factorization Theorem


    3.4 Direct Proof and Counterexample IV: Division into Cases


and the Quotient-Remainder Theorem    156


        Discussion of the Quorient.Remainder Theorem and Examples


;d/v and mod;Alter-


        native Representations of Integers and Applications to


Number Theory


    3.5 Direct Proofand Counte