注册 登录 进入教材巡展
#
  • #

出版时间:2016年1月

出版社:高等教育出版社

以下为《现代芬斯勒几何初步(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040444247
  • 1版
  • 84687
  • 0044175696-2
  • 16开
  • 2016年1月
  • 530
  • 393
  • 理学
  • 数学
  • O186.14
  • 数学类
  • 研究生
内容简介
沈一兵、沈忠民编著的《现代芬斯勒几何初步》介绍:This comprehensive book is an introduction to the basics of Finsler geometry with recent developments in its area. It includes local geometry as well as global geometry of Finsler manifolds.
In Part Ⅰ, the authors discuss differential manifolds, Finsler metrics, the Chern connection, Riemannian and non-Riemannian quantities. Part Ⅱ is written for readers who would like to further their studies in Finsler geometry. It covers projective transformations,comparison theorems, fundamental group, minimal immersions,harmonic maps, Einstein metrics, conformal transformations,amongst other related topics.The authors made great efforts to ensure that the contents are accessible to senior undergraduate students, graduate students, mathematicians and scientists.
目录

Preface


Foundations


1.  Differentiable Manifolds


  1.1  Differentiable manifolds


    1.1.1  Differentiable manifolds


    1.1.2  Examples of differentiable manifolds


  1.2  Vector fields and tensor fields


    1.2.1  Vector bundles


    1.2.2  Tensor fields


  1.3  Exterior forms and exterior differentials


    1.3.1  Exterior differential operators


    1.3.2  de Rham theorem


  1.4  Vector bundles and connections


    1.4.1  Connection of the vector bundle


    1.4.2  Curvature of a connection


  Exercises


2.  Finsler Metrics


  2.1  Finsler metrics


    2.1.1  Finsler metrics


    2.1.2  Examples of Finsler metrics


  2.2  Cartan torsion


    2.2.1  Cartan torsion


    2.2.2  Deicke theorem


  2.3  Hilbert form and sprays


    2.3.1  Hilbert form


    2.3.2  Sprays


  2.4  Geodesics


    2.4.1  Geodesics


    2.4.2  Geodesic coefficients


    2.4.3  Geodesic completeness


  Exercises


3.  Connections and Curvatures


  3.1  Connections


    3.1.1  Chern connection


    3.1.2  Berwald metrics and Landsberg metrics


  3.2  Curvatures


    3.2.1  Curvature form of the Chern connection


    3.2.2  Flag curvature and Ricci curvature


  3.3  Bianchi identities


    3.3.1  Covariant differentiation


    3.3.2  Bianchi identities


    3.3.3  Other formulas


  3.4  Legendre transformation


    3.4.1  The dual norm in the dual space


    3.4.2  Legendre transformation


    3.4.3  Example


  Exercises


4.  S-Curvature


  4.1  Volume measures


    4.1.1  Busemann-Hausdorff volume element


    4.1.2  The volume element induced from SM


  4.2  S-curvature


    4.2.1  Distortion


    4.2.2  S-curvature and E-curvature


  4.3  Isotropic S-curvature


    4.3.1  Isotropic S-curvature and isotropic E-curvature


    4.3.2  Randers metrics of isotropic S-curvature


    4.3.3  Geodesic flow


  Exercises


5.  Riemann Curvature


  5.1  The second variation of arc length


    5.1.1  The second variation of length


    5.1.2  Elements of curvature and topology


  5.2  Scalar flag curvature


    5.2.1  Schur theorem


    5.2.2  Constant flag curvature


  5.3  Global rigidity results


    5.3.1  Flag curvature with special conditions


    5.3.2  Manifolds with non-positive flag curvature


  5.4  Navigation


    5.4.1  Navigation problem


    5.4.2  Randers metrics and navigation


    5.4.3  Ricci curvature and Einstein metrics


  Exercises


  Further Studies


6.  Projective Changes


  6.1  The projective equivalence


    6.1.1  Projective equivalence


    6.1.2  Projective invariants


  6.2  Projectively flat metrics


    6.2.1  Projectively flat metrics


    6.2.2  Projectively fiat metrics with constant flag curvature


  6.3  Projectively fiat metrics with almost isotropic S-curvature


    6.3.1  Randers metrics with almost isotropic S-curvature


    6.3.2  Projectively flat metrics with almost isotropic


  S-curvature


  6.4  Some special projectively equivalent Finsler metrics


    6.4.1  Projectively equivalent Randers metrics


    6.4.2  The projective equivalence of (α, β)-metrics


    6.4.3  The projective equivalence of quadratic (α, β)


  metrics


  Exercises


7.  Comparison Theorems


  7.1  Volume comparison theorems for Finsler manifolds


    7.1.1  The Jacobian of the exponential map


    7.1.2  Distance function and comparison theorems


    7.1.3  Volume comparison theorems


  7.2  Berger-Kazdan comparison theorems


    7.2.1  The Kazdan inequality


    7.2.2  The rigidity of reversible Finsler manifolds


    7.2.3  The Berger-Kazdan comparison theorem


  Exercises


8.  Fundamental Groups of Finsler Manifolds


  8.1  Fundamental groups of Finsler manifolds


    8.1.1  Fundamental groups and covering spaces


    8.1.2  Algebraic norms and geometric norms


    8.1.3  Growth of fundamental groups


  8.2  Entropy and finiteness of fundamental group


    8.2.1  Entropy of fundamental group


    8.2.2  The first Betti number


    8.2.3  Finiteness of fundamental group


  8.3  Gromov pre-compactness theorems


    8.3.1  General metric sp