注册 登录 进入教材巡展
#

出版时间:2016年1月

出版社:哈尔滨工业大学出版社

以下为《量子机器学习中数据挖掘的量子计算方法(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 哈尔滨工业大学出版社
  • 9787560357591
  • 81868
  • 2016年1月
  • 未分类
  • 未分类
  • O413.1-39
内容简介

  维特克著的《量子机器学习中数据挖掘的量子计算方法(英文版)/国外优秀物理著作原版系列》分三个部分对量子机器学习中数据挖掘的量子计算方法进行了介绍,第一部分对基础概念进行了整体概述,例如,机器学习、量子力学、量子计算等,第二部分介绍了经典的学习算法,第三部分介绍了量子计算与机器学习。这本书综合了广泛的调查研究形成,采用简洁的表达形式,并配以应用、实践的例子。

目录

Preface


Notations


Part One Fundamental Concepts


 1 Introduction


  1.1 Learning Theory and Data Mining


  1.2 Why Quantum Computers?


  1.3 A Heterogeneous Model


  1.4 An Overview of Quantum Machine Learning Algorithms


  1.5 Quantum—Like Learning on Classical Computers


 2 Machine Learning


  2.1 Data—DrivenModels


  2.2 FeatureSpace


  2.3 Supervised and Unsupervised Learning


  2.4 Generalization Performance


  2.5 Model Complexity


  2.6 Ensembles


  2.7 Data Dependencies and Computational Complexity


 3 Quantum Mechanics


  3.1 States and Superposition


  3.2 Density Matrix Representation and Mixed States


  3.3 Composite Systems and Entanglement


  3.4 Evolution


  3.5 Measurement


  3.6 Uncertainty Relations


  3.7 Tunneling


  3.8 Adiabatic Theorem


  3.9 No—Cloning Theorem


 4 Quantum Computing


  4.1 Qubits and the Bloch Sphere


  4.2 QuantumCircuits


  4.3 Adiabatic Quantum Computing


  4.4 QuantumParallelism


  4.5 Grover's Algorithm


  4.6 Complexity Classes


  4.7 Quantum Information Theory


Part Two Classical Learning Algorithms


 5 Unsupervised Learning


  5.1 Principal Component Analysis


  5.2 ManifoldEmbedding


  5.3 K—Means and K—Medians Clustering


  5.4 Hierarchical Clustering


  5.5 Density—BasedClustering


 6 Pattern Recogrution and Neural Networks


  6.1 The Perceptron


  6.2 Hopfield Networks


  6.3 Feedforward Networks


  6.4 Deep Learning


  6.5 Computational Complexity


 7 Supervised Learning and Support Vector Machines


  7.1 K—Nearest Neighbors


  7.2 Optimal Margin Classifiers


  7.3 Soft Margins


  7.4 Nonlinearity and KemelFunctions


  7.5 Least—Squares Formulation


  7.6 Generalization Performance


  7.7 Multiclass Problems


  7.8 Loss Functions


  7.9 Computational Complexity


 8 Regression Analysis


  8.1 Linear Least Squares


  8.2 Nonlinear Regression


  8.3 Nonparametric Regression


  8.4 Computational Complexity


 9 Boosting


  9.1 Weak Classifiers


  9.2 Ada Boost


  9.3 A Family of Convex Boosters


  9.4 Nonconvex Loss Functions


Part Three Quantum Computing and Machine Learning


 10 Clustering Structure and Quantum Computing


  10.1 Quantum Random Access Memory


  10.2 Calculating Dot Products


  10.3 Quantum Principal Component Analysis


  10.4 Toward Quantum Manifold Embedding


  10.5 QuantumK—Means


  10.6 QuantumK—Medians


  10.7 Quantum Hierarchical Clustering


  10.8 Computational Complexity


 11 Quantum Pattern Recognition


  11.1 Quantum Associative Memory


  11.2 The Quantum Perceptron


  11.3 Quantum Neural Networks


  11.4 Physical Realizations


  11.5 Computational Complexity


 12 Quantum Classification


  12.1 Nearest Neighbors


  12.2 Support Vector Machines with Grover's Search


  12.3 Support Vector Machines with Exponential Speedup


  12.4 Computational Complexity


 13 Quantum Process Tomography and Regression


  13.1 Channel—State Duality


  13.2 Quantum Process Tomography


  13.3 Groups, Compact Lie Groups, and the Unitary Group


  13.4 Representation Theory


  13.5 Parallel Application and Storage of the Unitary


  13.6 Optimal State for Learning


  13.7 Applying the Unitary and Finding the Parameter for the Input State


 14 Boosting and Adiabatic Quantum Computing


  14.1 Quantum Annealing


  14.2 Quadratic Unconstrained Binary Optimization


  14.3 Ising Model


  14.4 QBoost


  14.5 Nonconvexity


  14.6 Sparsity, Bit Depth, and Generalization Performance


  14.7 Mapping to Hardware


  14.8 Computational Complexity


Bibliography