注册 登录 进入教材巡展
#
  • #

出版时间:2014年5月

出版社:高等教育出版社

以下为《计量经济学导论(第四版)(英文改编)(送教师课件)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040395945
  • 4版
  • 64132
  • 0040173835-6
  • 异16开
  • 2014年5月
  • 780
  • 482
  • 经济学
  • 应用经济学
  • F224.0
  • 经济学类核心课
  • 本科
内容简介
伍德里奇编著的《计量经济学导论(第4版)》为Wooldridge所著的Introductory Econometrics-A Modern Approach,Fourth Edition的英文改编版教材。改编后的教材内容简洁、逻辑清晰、篇幅与深度适当,并且具有比较完整的知识体系,符合我国高等学校计量经济学的本科教学需求。
改编后的教材集中于计量经济学的主流框架,加强了基础性理论,适当弱化了应用。具体分为四个部分:一是基于横截面数据的模型、最小二乘估计(0LS)和假设检验及其应用;二是时间序列数据的模型设定、估计和检验理论与应用;三是面板数据模型的理论和应用;四是离散选择模型或者微观计量经济学,用于研究个体选择的决定因素。
《计量经济学导论(第4版)》可作为高等学校经济学类、管理学类本科的计量经济学教材,也可以作为研究生的参考教材。本书配套的数据文件等教学资源可通过书后的教辅材料申请表索取。
目录

Chapter 1


  The Nature of Econometrics and Economic Data


  1.1 What Is Econometrics?


  1.2 Steps in Empirical Economic Analysis


  1.3 The Structure of Economic Data


  1.4 Causality and the Notion of Ceteris Paribus in Econometric Analysis


  Summary


  Key Terms


  Computer Exercises


  Part 1


  Regression Analysis with Cross-Sectional Data


Chapter 2


  The Simple Regression Model


  2.1 Definition of the Simple Regression Model


  2.2 Deriving the Ordinary Least Squares Estimates


  2.3 Properties of OLS on Any Sample of Data


  2.4 Units of Measurement and Functional Form


  2.5 Expected Values and Variances of the OLS Estimators


  2.6 Regression through the Origin


  Summary


  Key Terms


  Computer Exercises


Appendix 2A


Chapter


  Multiple Regression Analysis:


  Estimation


  3.1 Motivation for Multiple Regression


  3.2 Mechanics and Interpretation of Ordinary Least Squares


  3.3 The Expected Value of the OLS Estimators


  3.4 The Variance of the OLS Estimators


  3.5 Efficiency of OLS: The Ganss-Markov Theorem


  Summary


  Key Terms


  Computer Exercises


Appendix 3A


Chapter 4


  Multiple Regression Analysis:


  Inference


  4.1 Sampling Distributions of the OLS Estimators


  4.2 Testing Hypotheses about a Single Population Parameter: The t Test 112


  4.3 Confidence Intervals


  4.4 Testing Hypotheses about a Single Linear Combination of the Parameters 132


  4.5 Testing Multiple Linear Restrictions: The F Test


  4.6 Reporting Regression Results


  Summary


  Key Terms


  Computer Exercises


Chapter 5


  Multiple Regression Analysis: OLSAsymptotics


  5.1 Consistency


  5.2 Asymptotic Normality and Large Sample Inference


  5.3 Asymptotic Efficiency of OLS


  Summary


  Key Terms


  Computer Exercises


Appendix 5A


Chapter 6


  Multiple Regression Analysis with Qualitative Information: Binary (or Dummy) Variables


  6.1 Describing Qualitative Information


  6.2 A Single Dummy Independent Variable


  6.3 Using Dummy Variables for Multiple Categories


  6.4 Interactions Involving Dummy Variables


  6.5 A Binary Dependent Variable: The Linear Probability Model


  6.6 More on Policy Analysis and Program Evaluation


  Summary


  Key Terms


  Computer Exercises


Chapter 7


  Heteroskedasticity


  7.l Consequences of Heteroskedasticity for OLS


  7.2 Heteroskedasticity-Robust Inference after OLS Estimation


  7.3 Testing for Heteroskedasticity


  7.4 Weighted Least Squares Estimation


  7.5 The Linear Probability Model Revisited


  Summary


  Key Terms


  Computer Exercises


Chapter 8


  More on Specification


  8.1 Functional Form Misspecification


  Summary


  Key Terms


  Computer Exercises


  Part 2


  Regression Analysis with


  Time Series Data


Chapter 9


  Basic Regression Analysis with Time Series Data


  9. I The Nature of Time Series Data


  9.2 Examples of Time Series Regression Models


  9.3 Finite Sample Properties of OLS under Classical Assumptions


  9.4 Functional Form, Dummy Variables, and Index Numbers


  9.5 Trends and Seasonality


  Summary


  Key Terms


  Computer Exercises


Chapter 10


  Further Issues in Using OLS with Time Series Data


  10.1 Stationary and Nonstationary Time Series


  10.2 Asymptotic Properties of OLS


  10.3 Using Highly Persistent Time Series in Regression Analysis


  Summary


  Key Terms


  Computer Exercises


Chapter 11


  Serial Correlation and Heteroskedasticity in Time Series Regressions


  11.1 Properties of OLS with Serially Correlated Errors


  11.2 Testing for Serial Correlation


  11.3 Correcting for Serial Correlation with Strictly Exogenous Regressors


  11.4 Differencing and Serial Correlation


  11.5 Serial Correlation-Robust Inference after OLS


  11.6 Heteroskedasticity in Time Series Regressions


  Summary


  Key Terms


  Computer Exercises


  Part 3


  Advanced Topics


Chapter 12


  Advanced Panel Data Methods


  12.1 Fixed Effects Estimation


  12.2 Random Effects Models


  12.3 Applying Panel Data Methods to Other Data Structures


  Summary


  Key