注册 登录 进入教材巡展
#

出版时间:2014年9月

出版社:东南大学

以下为《高等数学(上) 英文版》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 东南大学
  • 9787564151737
  • 58388
  • 2014年9月
  • 未分类
  • 未分类
  • O13
内容简介

  东南大学大学数学教研室编著的《高等数学》是为响应东南大学国际化需要,根据国家教育部非数学专业数学基础课教学指导分委员会制定的工科类本科数学基础课程教学基本要求,并结合东南大学数学系多年教学改革实践经验编写的全英文教材。全书分为上、下两册,内容包括极限、一元函数微分学、一元函数积分学、常微分方程、级数、向鼍代数与空间解析几何、多元函数微分学、多元函数积分学、向量场的积分、复变函数等十个章节。


  本书可作为高等理工科院校非数学类专业本科生学习高等数学的英文教材。也可供其他专业选用和社会读者阅读。

目录

Chapter 1 Limits


 1.1 The Concept of Limits and its Properties


  1.1.1 Limits of Sequence


  1.1.2 Limits of Functions


  1.1.3 Properties of Limits


 Exercise 1.1


 1.2 Limits Theorem


  1.2.1 Rules for Finding Limits


  1.2.2 The Sandwich Theorem


  1.2.3 Monotonic Sequence Theorem


  1.2.4 The Cauchy Criterion


 Exercise 1.2


 1.3 Two Important Special Limits


 Exercise 1.3


 1.4 Infinitesimal and Infinite


  1.4.1 Infinitesimal


  1.4.2 Infinite


 Exercise 1.4


 1.5 Continuous Function


  1.5.1 Continuity


  1.5.2 Discontinuity


 Exercise 1.5


 1.6 Theorems about Continuous Function on a Closed Interval


 Exercise 1.6


 Review and Exercise


Chapter 2 Differentiation


 2.1 The Derivative


 Exercise 2.1


 2.2 Rules for Fingding the Derivative


  2.2.1 Derivative of Arithmetic Combination


  2.2.2 The Derivative Rule for Inverses


  2.2.3 Derivative of Composition


  2.2.4 Implicit Differentiation


  2.2.5 Parametric Differentiation


  2.2.6 Related Rates of Change


 Exercise 2.2


 2.3 Higher-Order Derivatives


 Exercise 2.3


 2.4 Differentials


 Exercise 2.4


 2.5 The Mean Value Theorem


 Exercise 2.5


 2.6 L'Hospital's Rule


 Exercise 2.6


 2.7 Taylor's Theorem


 Exercise 2.7


 2.8 Applications of Derivatives


  2.8.1 Monotonicity


  2.8.2 Local Extreme Values


  2.8.3 Extreme Values


  2.8.4 Concavity


  2.8.5 Graphing Functions


 Exercise 2.8


 Review and Exercise


Chapter 3 The Integration


 3.1 The Definite Integral


  3.1.1 Two Examples


  3.1.2 The Definition of Definite Integral


  3.1.3 Properties of Definite Integrals


 Exercise 3.1


 3.2 The Indefinite Integral


 Exercise 3.2


 3.3 The Fundamental Theorem


  3.3.1 First Fundamental Theorem


  3.3.2 Second Fundamental Theorem


 Exercise 3.3


 3.4 Techniques of Indefinite Integration


  3.4.1 Substitution in Indefinite Integrals


  3.4.2 Indefinite Integration by Parts


  3.4.3 Indefinite Integration of Rational Functions by


 Partial Fractions


 Exercise 3.4


 3.5 Techniques of Definite Integration


  3.5.1 Substitution in Definite Integrals


  3.5.2 Definite Integration by Parts


 Exercise 3.5


 3.6 Applications of Definite Integrals


  3.6.1 Lengths of Plane Curves


  3.6.2 Area between Two Curves


  3.6.3 Volumes of Solids


  3.6.4 Areas of Surface of Revolution


  3.6.5 Moments and Center of Mass


  3.6.6 Work and Fluid Force


 Exercise 3.6


 3.7 Improper Integrals


  3.7.1 Improper Integrals.Infinite Limits of Integration


  3.7.2 Improper Integrals: Infinite Integrands


 Exercise 3.7


 Review and Exercise


Chapter 4 Differential Equations


 4.1 The Concept of Differential Equations


 Exercise 4.1


 4.2 Differential Equations of the First Order


  4.2.1 Equations with Variable Separable


  4.2.2 Homogeneous Equation


 Exercise 4.2


 4.3 First-order Linear Differential Equations


 Exercise 4.3


 4.4 Equations Reducible to First Order


  4.4.1 Equations of the Form y(n)=f(x)


 4.4,2 Equations of the Form y =y (x,y )


  4.4.3 Equations of the Form y=f(y,y')


 Exercise 4.4


 4.5 Linear Differential Equations


  4.5.1 Basic Theory of Linear Differential Equations


  4.5.2 Homogeneous Linear Differential Equations of the


 Second Order with Constant Coefficients


  4.5.3 Nonhomogeneous Linear Differential Equations of the


 Second Order with Constant Coefficients


  4.5.4 Euler Differential Equation


 Exercise 4.5


 4.6 Systems of Linear Differential Equations


 with Constant Coefficients


 Exercise 4.6


 4.7 Applications


 Exercise 4.7


Review and Exercise