注册 登录 进入教材巡展
#
  • #

出版时间:2016年4月

出版社:电子工业出版社

以下为《线性代数及其应用(第三版)(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 电子工业出版社
  • 9787121285912
  • 1-1
  • 55378
  • 0046170667-3
  • 平塑
  • 16开
  • 2016年4月
  • 806
  • 576
  • 理学
  • 数学
  • O151.2
  • 数学基础
  • 研究生、本科
内容简介
线性代数是处理矩阵和向量空间的数学分支科学,在现代数学的各个领域都有应用。莱著的这本《线性代数及其应用(第3版英文版)》主要包括线性方程组、矩阵代数、行列式、向量空间、特征值和特征向量、正交性和最小二乘方、对称矩阵和二次型等内容,目的是使学生掌握线性代数最基本的概念、理论和证明。全书首先以常见的方式具体地介绍了线性无关、子空间、向量空间和线性变换等概念,然后逐渐展开,因此最后在抽象地讨论概念时,这些内容非常容易理解。
本书是一本介绍性的线性代数教材,内容翔实,层次清晰,适合作为高等院校理工科数学课程的双语教学用书,也可作为公司职员及工程学研究人员的参考书。
目录

CHAPTER 1 Linear Equations in Linear Algebra


  Introductory Example: Linear Models in Economics and Engineering


  1.1 Systems of Linear Equations


  1.2 Row Reduction and Echelon Forms


  1.3 Vector Equations


  1.4 The Matrix Equation Ax = b


  1.5 Solution Sets of Linear Systems


  1.6 Applications of Linear Systems


  1.7 Linear Independence


  1.8 Introduction to Linear Transformations


  1.9 The Matrix of a Linear Transformations


  1.1 0Linear Models in Business, Science, and Engineering


  Supplementary Exercises


CHAPTER 2 Matrix Algebra


  Introductory Example: Computer Models in Aircraft Design


  2.1 Matrix Operations


  2.2 The Inverse of a Matrix


  2.3 Characterizations of Invertible Matrices


  2.4 Partioned Matrices


  2.5 Matrix Factorizations


  2.6 The Leontief Input-Output Modes


  2.7 Applications to Computer Graphics


  2.8 Subspaces of Rn


  2.9 Dimension and Rank


  Supplementary Exercises


CHAPTER 3 Determinants


  Introductory Example: Determinants in Analytic Geometry


  3.1 Introduction to Determinants


  3.2 Properties of Determinants


  3.3 Cramer’s Rule, Volume, and Linear Transformations


  Supplementary Exercises


CHAPTER 4 Vector Spaces


  Introductory Example: Space Flight and Control Systems


  4.1 Vector Spaces and Subspaces


  4.2 Null Space, Column Spaces, and Linear Transformations


  4.3 Linearly Independent Sets: Bases


  4.4 Coordinate Systems


  4.5 The Dimension of a Vector Space


  4.6 Rank


  4.7 Change of Basis


  4.8 Applications to Difference Equations


  4.9 Applications to Markov Chains


  Supplementary Exercises


CHAPTER 5 Eigenvalues and Eigenvectors


  Introductory Example: Dynamical Systems and Spotted Owls


  5.1 Eigenvectors and Eignevalues


  5.2 The Characteristic Equation


  5.3 Diagonalization


  5.4 Eigenvectors and Linear Transformations


  5.5 Complex Eigenvalues


  5.6 Discrete Dynamical Systems


  5.7 Applications to Differential Equations


  5.8 Iterative Estimates for Eigenvalues


  Supplementary Exercises


CHAPTER 6 Orthogonality and Least Squares


  Introductory Example: Readjusting the North American Datum


  6.1 Inner Product, Length, and Orthogonality


  6.2 Orthogonal Sets


  6.3 Orthogonal Projections


  6.4 The Gram-Schmidt Process


  6.5 Least-Squares Problems


  6.6 Applications to Linear Models


  6.7 Inner Product Spaces


  6.8 Applications of Inner Product Spaces


  Supplementary Exercises


CHAPTER 7 Symmetric Matrices and Quadratic Forms


  Introductory Example: Multichannel Image Processing


  7.1 Diagonalization of Symmetric Matices


  7.2 Quadratic Forms


  7.3 Constrained Optimization


  7.4 The Singular Value Deposition


  7.5 Applications to Image Processing and Statistics


  Supplementary Exercises


Appendixes


  A Uniqueness of the Reduced Echelon Form


  B Complex Numbers


Glossary


Answers to Odd-Numbered Exercises


Index