线性代数及其应用(第三版)(英文版)
作者: [美]戴维 C.莱
出版时间:2016年4月
出版社:电子工业出版社
- 电子工业出版社
- 9787121285912
- 1-1
- 55378
- 0046170667-3
- 平塑
- 16开
- 2016年4月
- 806
- 576
- 理学
- 数学
- O151.2
- 数学基础
- 研究生、本科
本书是一本介绍性的线性代数教材,内容翔实,层次清晰,适合作为高等院校理工科数学课程的双语教学用书,也可作为公司职员及工程学研究人员的参考书。
CHAPTER 1 Linear Equations in Linear Algebra
Introductory Example: Linear Models in Economics and Engineering
1.1 Systems of Linear Equations
1.2 Row Reduction and Echelon Forms
1.3 Vector Equations
1.4 The Matrix Equation Ax = b
1.5 Solution Sets of Linear Systems
1.6 Applications of Linear Systems
1.7 Linear Independence
1.8 Introduction to Linear Transformations
1.9 The Matrix of a Linear Transformations
1.1 0Linear Models in Business, Science, and Engineering
Supplementary Exercises
CHAPTER 2 Matrix Algebra
Introductory Example: Computer Models in Aircraft Design
2.1 Matrix Operations
2.2 The Inverse of a Matrix
2.3 Characterizations of Invertible Matrices
2.4 Partioned Matrices
2.5 Matrix Factorizations
2.6 The Leontief Input-Output Modes
2.7 Applications to Computer Graphics
2.8 Subspaces of Rn
2.9 Dimension and Rank
Supplementary Exercises
CHAPTER 3 Determinants
Introductory Example: Determinants in Analytic Geometry
3.1 Introduction to Determinants
3.2 Properties of Determinants
3.3 Cramer’s Rule, Volume, and Linear Transformations
Supplementary Exercises
CHAPTER 4 Vector Spaces
Introductory Example: Space Flight and Control Systems
4.1 Vector Spaces and Subspaces
4.2 Null Space, Column Spaces, and Linear Transformations
4.3 Linearly Independent Sets: Bases
4.4 Coordinate Systems
4.5 The Dimension of a Vector Space
4.6 Rank
4.7 Change of Basis
4.8 Applications to Difference Equations
4.9 Applications to Markov Chains
Supplementary Exercises
CHAPTER 5 Eigenvalues and Eigenvectors
Introductory Example: Dynamical Systems and Spotted Owls
5.1 Eigenvectors and Eignevalues
5.2 The Characteristic Equation
5.3 Diagonalization
5.4 Eigenvectors and Linear Transformations
5.5 Complex Eigenvalues
5.6 Discrete Dynamical Systems
5.7 Applications to Differential Equations
5.8 Iterative Estimates for Eigenvalues
Supplementary Exercises
CHAPTER 6 Orthogonality and Least Squares
Introductory Example: Readjusting the North American Datum
6.1 Inner Product, Length, and Orthogonality
6.2 Orthogonal Sets
6.3 Orthogonal Projections
6.4 The Gram-Schmidt Process
6.5 Least-Squares Problems
6.6 Applications to Linear Models
6.7 Inner Product Spaces
6.8 Applications of Inner Product Spaces
Supplementary Exercises
CHAPTER 7 Symmetric Matrices and Quadratic Forms
Introductory Example: Multichannel Image Processing
7.1 Diagonalization of Symmetric Matices
7.2 Quadratic Forms
7.3 Constrained Optimization
7.4 The Singular Value Deposition
7.5 Applications to Image Processing and Statistics
Supplementary Exercises
Appendixes
A Uniqueness of the Reduced Echelon Form
B Complex Numbers
Glossary
Answers to Odd-Numbered Exercises
Index