注册 登录 进入教材巡展
#

出版时间:2014年4月

出版社:哈尔滨工业大学

以下为《半导体物理性能手册 第3卷 上》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 哈尔滨工业大学
  • 9787560345185
  • 30441
  • 2014年4月
  • 未分类
  • 未分类
  • O472-62
内容简介

  足立贞夫编著的《半导体物理性能手册(第3卷上)/Springer手册精选原版系列》介绍了各族半导体、化合物半导体的物理性能,包括:


  Structural Properties结构特性


  Thermal Properties热学性质


  Elastic Properties弹性性质


  Phonons and Lattice Vibronic Properties声子与晶格振动性质


  Collective Effects and Related Properties集体效应及相关性质


  Energy-Band Structure:Energy-Band Gaps能带结构:能带隙


  Energy—Band Structure:Electron and Hole Effective Masses能带结构:电子和空穴的有效质量


  Electronic Deformation Potential电子形变势


  Electron Affinity and Schottky Barrier Height电子亲和能与肖特基势垒高度


  Optical Properties光学性质


  Elastooptic,Electrooptic,andNonlinearOptical Properties弹光、电光和非线性光学性质


  Carrier Transport Properties载流子输运性质


  本书适用对象包括材料、微电子学、电子科学与技术等专业的本科生和研究生,以及从事半导体研究的专业人员。

目录

Preface


Acknowledgments


Contents of Other Volumes


1 Magnesium Oxide (Mg0)


 1.1 Structural Properties


  1.1.1 Ionicity


  1.1.2 Elemental Isotopic Abundance and Molecular Weight


  1.1.3 Crystal Structure and Space Group


  1.1.4 Lattice Constant and Its Related Parameters


  1.1.5 Structural Phase Transition


  1.1.6 Cleavage Plane


 1.2 Thermal Properties


  1.2.1 Melting Point and Its Related Parameters


  1.2.2 Specific Heat


  1.2.3 Debye Temperature


  1.2.4 Thermal Expansion Coefficient


  1.2.5 Thermal Conductivity and Diffusivity


 1.3 Elastic Properties


  1.3.1 Elastic Constant


  1.3.2 Third-Order Elastic Constant


  1.3.3 Young's Modulus, Poisson's Ratio, and Similar


  1.3.4 Microhardness


  1.3.5 Sound Velocity


 1.4 Phonons and Lattice Vibronic Properties


  1.4.1 Phonon Dispersion Relation


  1.4.2 Phonon Frequency


  1.4.3 Mode Gruneisen Parameter


  1.4.4 Phonon Deformation Potential


 1.5 Collective Effects and Related Properties


  1.5.1 Piezoelectric Constant


  1.5.2 Frohlich Coupling Constant


 1.6 Energy-Band Structure: Energy-Band Gaps


  1.6.1 Basic Properties


  1.6.2 Eo-Gap Region


  1.6.3 Higher-Lying Direct Gap


  1.6.4 Lowest Indirect Gap


  1.6.5 Conduction-Valley Energy Separation


  1.6.6 Direct-Indirect-Gap Transition Pressure


 1.7 Energy-Band Structure: Electron and Hole Effective Masses


  1.7.1 Electron Effective Mass: F Valley


  1.7.2 Electron Effective Mass: Satellite Valley


  1.7.3 Hole Effective Mass


 1.8 Electronic Deformation Potential


  1.8.1 Intravalley DeformationPotential: F Point


  1.8.2 Intravalley Deformation Potential: High-Symmetry Points


  1.8.3 Intervalley Deformation Potential


 1.9 Electron Affinity and Schottky Barrier Height


  1.9.1 Electron Affinity


  1.9.2 Schottky Barrier Height


 1.10 Optical Properties


  1.10.1 Summary of Optical Dispersion Relations


  1.10.2 The Reststrahlen Region


  1.10.3 At or Near the Fundamental Absorption Edge


  1.10.4 The Interband Transition Region


  1.10.5 Free-Carrier Absorption and Related Phenomena


 1.11 Elastooptic, Electrooptic, and Nonlinear Optical Properties


  1.11.1 Elastooptic Effect/


  1.11.2 Linear Electrooptic Constant/


  1.11.3 Quadratic Electrooptic Constant/


  1.11.4 Franz-Keldysh Effect


  1.11.5 Nonlinear Optical Constant


 1.12 Carrier Transport Properties


  1.12.1 Low-Field Mobility: Electrons


  1.12.2 Low-Field Mobility: Holes


  1.12.3 High-Field Transport: Elec,trons


  1.12.4 High-Field Transport: Holes


  1.12.5 Minority-Carrier Transport: Electrons in p-Type Materials


  1.12.6 Minority-Carrier Transport: Holes in n-Type Materials


……


2 Zincblende Magnesium Sulphide (β-MgS)


3 Zincblende Magnesium Selenide (βMgSe)


4 Zincblende Magnesium Telluride(β-MgTe)


5 Zinc Oxide (Zn0)


6 Wurtzite Zinc Sulphide (a-ZnS)


7 Cubic Zinc Sulphide (β-ZnS)


8 Zinc Selenide (ZnSe)


9 Zinc Telluride (ZnTe)